Arithmetic Sequences

A sequence where every successive term is found by ADDING THE SAME NUMBER is called ARITHMETIC.
CHECK: Pick any term, subtract the term before it. If the result is always the same no matter where in the sequence you begin, then the sequence is arithmetic.

Example 1

$$
\text { ex: } \begin{aligned}
& 4-9=-5 \\
& -6-(-1)=-5
\end{aligned}
$$

The terms are separated by a COMMON DIFFERENCE of. -5

EXAMPLE 2 - Find the general term -of the following arithmetic sequence

the common difference is \qquad (let's call it " d ")

Observe...

$1^{\text {st }}$ term	2	a
$2^{\text {nd }}$ term	$2+3$	$a+d$
$3^{\text {rd }}$ term	$2+3+3$	$a+2 d$
$4^{\text {th }}$ term	$2+3+3+3$	$a+3 d$
$5^{\text {th }}$ term	$2+3+3+3+3$	$a+4 d$
$6^{\text {th }}$ term	$2+3+3+3+3+3$	$a+5 d$

Do you see the pattern?
CONCLUSION: To find the general term of an arithmetic sequence

$$
t_{n}=a+(n-1) d
$$

where \boldsymbol{a} is the first term
\boldsymbol{n} is the \qquad number. \qquad
and \boldsymbol{d} is the \qquad common

$\boldsymbol{\mathcal { A } r i t h m e t i c} \boldsymbol{\mathcal { S e q u e n c e s }}$ continued.. $\quad t_{n}=a+(n-1) d$

EXAMPLE 3 - Given the arithmetic sequence 8,14,20,26,...
a) Find the $20^{\text {th }}$ term

$$
\begin{aligned}
& a=8 \\
& d=6
\end{aligned}
$$

general term:

$$
\begin{aligned}
& t_{n}=8+(n-1)(6) \\
& t_{n}=8+6 n-6 \\
& \left|t_{n}=6 n+2\right| \\
& t_{20}=6(20)+2
\end{aligned}
$$

the Roth term is 122
EXAMPLE 4 - The $33^{\text {rd }}$ term of an arithmetic sequence is 8 while the $10^{\text {th }}$ term of the same sequence is 4.5 . Find the general term of the sequence.

$$
t_{3}=8
$$

but $t_{n}=a+(n-1) d$

$$
\text { let } \begin{aligned}
t_{n} & =236 \\
\therefore 236 & =6 n+2 \\
234 & =6 n \\
n & =39
\end{aligned}
$$

the $39^{\text {th }}$ term 15236.

SEQUENCE
A set of numbers arranged in a specific order and following a specific pattern.

$$
t_{1}^{5}=5
$$

$$
80,40,20,10, \ldots
$$

$t_{n} \rightarrow$ Each "member" of the sequence is called a TERM. This is used to refer to any term in the sequence, also called the "general term." or nthterm
$n \rightarrow$ Each "member" has a position in the sequence ($1^{\text {st }}, 2^{\text {nd }}, 3$ rd, etc...). The letter n stands for this position
t_{2} is the $2^{\text {nd }}$ term in a sequence
t_{30} is the $30^{\text {th }}$ term in a sequence
t_{15} is the $15^{\text {th }}$ term in a sequence
t_{n} is ANY term in a sequence
the $n^{\text {th }}$ term/ general term
$a \rightarrow$ The FIRST TERM in a sequence has its own name! (NOT t_{1})

$$
\text { \& } t_{1} \text { is okay too }
$$

FUNCTIONS CAN BE SEQUENCES

Example 1 - Write the first 4 terms of the sequence:

$$
\begin{aligned}
& \text { a) } t_{n}=2 n+1 \quad \text { (genera lterm) } \\
& t_{1}=2(1)+1 \quad \therefore t_{1}=3 \\
& t_{2}=5 \\
& t_{3}=7 \\
& t_{4}=9
\end{aligned}
$$

b) $t_{n}=\frac{n}{n+1}$

$$
\begin{aligned}
& t_{1}=\frac{1}{2} \\
& t_{2}=\frac{2}{3}
\end{aligned}
$$

c) $1,4,9,16,25, \ldots$
square each natural number

$$
t_{n}=n^{2}
$$

$$
36,49,64
$$

