Arithmetic Sequences

A sequence where every successive term is found by ADDING THE SAME NUMBER is called ARITHMETIC.

<u>CHECK:</u> Pick any term, subtract the term before it. If the result is always the same no matter where in the sequence you begin, then the sequence is arithmetic.

EXAMPLE 1

4, −1, −6,... ≻∏ ∽∏ ∽

ex: 4-9 = -5-6 - (-1) = -5

The terms are separated by a **COMMON DIFFERENCE** of. -5

EXAMPLE 2 - Find the general term of the following arithmetic sequence

2, ∱	5,	8,	11,	the common difference is 3	(let's call it "d")
'a	,				

Observe...

1 st term	2	a
2 nd term	2 + 3	a + d
3 rd term	2 + 3 + 3	a + 2d
4 th term	2 +3+3+3	a+3d
5 th term	2+3+3+3+3	a + 4 d
6 th term	2 +3+3+3+3+3	a +5d

Do you see the pattern?

CONCLUSION: To find the general term of an arithmetic sequence

 $t_n = a + (n-1)d$ where a is the first term nisthe number of the term and d is the <u>COMMON</u>

Arithmetic Sequences continued...

general term t_n=q+(n=1) d

EXAMPLE 3 – Given the arithmetic sequence 8, 14, 20, 26, ...

a) Find the 20th term

$$q = 8$$

$$d = 6$$

general term:

$$t_n = 8 + (n-1)(6)$$

$$t_n = 8 + 6n-6$$

$$T_n = 6n+2$$

$$t_{20} = 6(20)+2$$

the Zoth term is 122

b) Which term is 236? let $t_n = 236$ $\therefore 236 = 6nf^2$ 234 = 6n n = 39the 39th term is 236.

EXAMPLE 4 – The 3rd term of an arithmetic sequence is 8 while the 10th term of the same sequence is 4.5. Find the general term of the sequence.

$$t_{3} = 8:$$

$$t_{10} = 4.5$$
but $[t_{11} = a_{11} (n-1)d]$

$$t_{3} = a_{12}d$$
and $t = a_{1} = a_{1}d$

$$f_{12}d = 8[0] \text{ and } [a+9:d = 4.5](2)$$

$$(2) - (0) = 7d = -3.5$$

$$d = -0.5$$

$$sub \text{ in } (2): a + 9(-0.5) = 4.5$$

$$a = -4.5$$

$$a = -4.5$$

$$a = -9$$

$$t_{11} = -9 + (n-1)(-0.5)$$

$$t_{12} = -0.5n + 0.5$$

$$t_{12} = -0.5n + 0.5$$

$$t_{12} = -0.5n + 9.5$$

Sequences

SEQUENCE

A set of numbers arranged in a specific order and following a specific pattern.

 $t_n \rightarrow$ Each "member" of the sequence is called a TERM. This is used to refer to any term in the sequence, also called the "general term." or nth term

 $n \rightarrow$ Each "member" has a position in the sequence (1st, 2nd, 3rd, etc...). The letter *n* stands for this position

 t_2 is the 2nd term in a sequence t_{30} is the 30th term in a sequence

 t_{15} is the 15th term in a sequence

t, is okay too

tn is ANY term in a sequence the nth term /general term

 $a \rightarrow$ The FIRST TERM in a sequence has its own name! (NOT t_1)

FUNCTIONS CAN BE SEQUENCES

EXAMPLE 1 – Write the first 4 terms of the sequence:

a)
$$t_n = 2n+1$$
 (general term)
 $t_1 = 2(1)+1$ $(t_1 = 3)$
 $t_2 = 5$
 $t_3 = 7$
 $t_4 = 9$
b) $t_n = \frac{n}{n+1}$
 $t_1 = \frac{1}{2}$
 $t_2 = \frac{2}{3}$
 $t_4 = \frac{1}{2}$

EXAMPLE 2 – Describe the pattern and predict what comes next

.