
Date:

SIMPLE INTEREST It Really Is Simple

CALCULATING SIMPLE INTEREST

Simple interest is calculated as a percentage of the <u>deposit</u> on an investment or loan using the formula (I) = Prt where:

Simple interest is added to the principal at the end of the period using the formula A = P + I, where

$$A = \frac{P + Pr t}{A = P(1 + rt)}$$
 (principal + interest)
$$A = P(1 + rt)$$
 Simple Interest

Interest Rate (r)

Show the following interest rates as they would appear in the simple interest formula as r. (*Hint: Divide by 100, or move decimal 2 spaces to the left*)

a) 13%b) 2.5%c) 0.5%0.130.0250.005

In the simple interest formula, time **MUST** be expressed in terms of years. So... if *time* is given in:

• Months $\rightarrow \div$ by <u>12</u>

Weeks
$$\rightarrow \div$$
 by 52

<u>Time</u> (*t*)

Express the following lengths of time in terms of years (t in the simple interest formula)

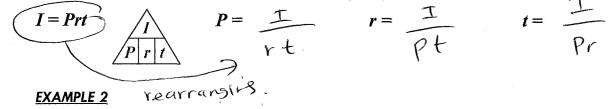
b)	24 months	c) 8 months	d) 14 weeks	e) 82 days
	2	2 years	7 26	82 365

EXAMPLE 1

r=0.045

a) Calculate how much interest is earned if \$2 000 is invested at 4.5% simple interest for 26 weeks

ρ


$$I = Prt$$

= 2000 (0.045) (0.5) = \$145

b) How much is the investment worth?

1

The Simple Interest Triangle \rightarrow Finding *P*, *r*, and *t*

Rearrange the simple interest formula to find the principal, interest rate, and time.

How much principal is needed to earn \$500 in interest in 2 years invested at 2.5% simple interest?

$$P = ? \qquad I = Prt$$

$$I = 500$$

$$f = 2 \qquad 500 = P(0.025)(2)$$

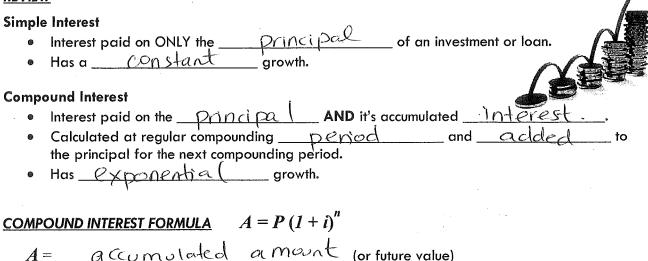
$$F = 0.025 \qquad 500 = 0.05P \qquad P = 10,000$$

$$EXAMPLE 3 \qquad 0.05 \qquad 6.05 \qquad 0.05 \qquad 0.05 \qquad 0.05 \qquad 0.000 \ \text{were needed}$$

$$What rate of simple interest is needed to get $7,000 to grow to $10,000 in 5 years?$$

$$r \qquad A = P + Prt \qquad I = Prt$$

$$r = ? \qquad 10000 = 7000t 7000(r)(5) \qquad 3000 = 7000(r)(5)$$

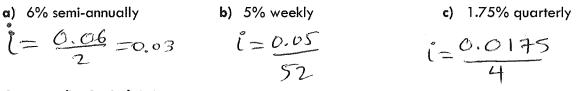

$$P = 7000 \qquad 3000 = 35000r \qquad 35000 \qquad r = 8.57% \qquad r = 8.57\% \qquad r = 8.57\% \qquad r = 8.57\% \qquad r = 5.57\% \qquad r = 5.5\% \qquad r$$

Adapted from OAME Support Resources for MCF 3M1 – Personal Finance

COMPOUND INTEREST

Date:

REVIEW


 $P = \frac{deposit}{principel}$ (the initial amount) i= interest rate per companding period n = number of <u>Compounding</u> periods

Compounding Frequency Terminology

- Annually once a year 6
- Semi-annually _____ times per year (every 6 months) ۲
- 4 times per year (every 3 months) 6 Quarterly -
- Semi-monthly <u>24</u> times per year (twice a month)
- 2.6 times per year (every 2 weeks) Bi-weekly – 0
- Weekly – 12_ Monthly

Interest Rate (\mathbf{i})

Calculate the interest rate (i) as it would appear in the compound interest formula. (Hint: Convert to decimal and divide by the number of compounding periods)

Compounding Periods (n)

Calculate the number of compounding periods (n) as it would appear in the compound interest formula. (Hint: multiply the length of time (in years) by the # of compounding periods in the compounding frequency)

b) Compounded semi-annually a) Compounded auarterly c) Compounded bi-weekly years. for 5 years for 18 months for 8 months n= 1,5×2 M= 5 X4 $n = \frac{8}{15} \times \frac{26}{26}$ =20 $= 17\frac{1}{3} = \frac{52}{3}$

Adapted from OAME Support Resources for MCF3M1 – Personal Finance

Date:

EXAMPLE 1

a) Calculate the amount of a \$500 investment, invested at 3% compounded quarterly for 3 years.

$$A = ?
P = 500
i = 0.03/4 = 0.0075
N = 3 \times 4 = 12
b) How much interest was earned?
I = A - P
= # 546.90
A = P(1+i)^{12}
= 500(1.0075)
= # 546.90
I = # 546.90$$

EXAMPLE 2

Peter borrowed \$5 000 to buy a used car? The interest rate on the loan was 5.45% per year, compounded monthly. He plans to repay the loan in four years.

a) How much must Peter repay?

$$A = ?
P = 5000
i = 0.0545
n = 4 \times 12 = 48
A = 5000 (1 + 0.0545
i = 12)
Interest = 1214.87
Interest = 121$$

b) If Peter repays the loan 6 months early, how much interest will he save (not have to repay)?

EXAMPLE 3

Jennifer's investment has grown by an average of 12.6% per year, compounded annually, over the past seven years. How much would her investment of \$2000 made eight years ago be worth today?

Salan

$$i = 0.126$$

 $n = 7$
 $p = 2000$ $A = $1200,0'(10,126)^7 = $4589.85.$

3 RULES OF THUMB FOR CALCULATING COMPOUND INTEREST

- Always identify the value of each variable first.
- Remember to use BEDMAS
- Keep all decimal places in your calculator and round to 2 decimal places at the end.

p. 481 #3, 4, 5ad, 10-12, p. 490 #4-6, 9