5.1 - The Coordinate Plane

A Coordinate Plane is also known as a Cartesian Plane, named after French mathematician, Rene Descartes. It is a system for graphing any point (ordered pairs) on a grid by using two numbers that form a coordinate (x, y). He came up with the idea while trying to describe the position of a spider crawling across the ceiling.

In Unit 1, we worked with an integer number line.

When a vertical number line and a horizontal number line intersect at right angles and at the point zero on each line, they form axes on a coordinate plane.

$>$ The number lines intersect at the Origin , which is labelled $(0,0)$.
$>$ The \qquad axis is labelled x.
$>$ The Vertical \qquad axis is labelled \boldsymbol{y}.
$>$ The axes divide the plane into four quadrants \qquad .
$>$ The numbers on the axes are called the co-ordinates.

Coordinates / Ordered Pairs

Any point on the plane can be described by its coordinates. Coordinates are also known as ordered \qquad
\qquad and written in the form \qquad .

The x-value of a coordinate represents the placement along the \boldsymbol{x}-axis, and it is always written \qquad first .

The y-value of a coordinate represents the placement along the y-axis, and it is always written \qquad

To plot a point (x, y) :
\checkmark Always start at the origin $(0,0)$
\checkmark Read along the x-axis to identify the \boldsymbol{x}-coordiante (the first coordinate)
A positive x-value means move to the right.
A negative x-value means move to the left.
\checkmark Read along the y-axis to identify the y-coordiante (the first coordinate)
A positive y-value means move to the upwards.
A negative y-value means move to the downwards.

Ex. 1: Graph the following points on the given grid. State which quadrant each point is in.
$A(3,4)$
Q1
$B(-1,4) \quad Q 2$
$C(4,-2) \quad Q 4$
$D(-5,-4) \quad Q 3$
$E(2,5) \quad Q 1$
$F(-3,-1)$
Q^{3}
$G(-3,7) \quad Q 2$
$H(0,0)$
origin (none).
$1(-2,0)$ none
$J(0,-4)$ none

Ex. 2: Using the coordinate plane given, write the ordered pairs for each point.

$G(2,5)$	$H(-8,5)$
$J(0,6)$	$K(7,2)$
$L(4,-6)$	$M(-4,0)$

The Coordinate Plane - Practice

Use the following grid to code and decode messages.

3. On the grid below, plot and label each point.

$$
\begin{array}{lll}
N(2,3) & P(2,-3) & Q(1,-3) \\
R(0,3) & S(3,0) & T(-2,0) \\
U(0,-1) & V(-1,2) & W(-3,1) \\
X(-1,3) & Y(-3,-1) & Z(-3,-2)
\end{array}
$$

1. Write the coordinate positions for the letters in these words:
dRIVE $(-1,2)(2,-1)(2,1)(1,-2)(0,2)$
PARTY $(-2,-1)(-2,3)(2,-1)(-1,-2)(2,-3)$
GAME $(-2,1)(-2,3)(1,0)(0,2)$
2. Decode this message, using the coordinate plane on the left.
$(2,1)(1,2)(-2,-3)(-3,-1)(0,-2)(-3,2)(-2,3)(3,0)$
IF:YOUCAN
$(-1,2)(0,2)(-3,2)(-3,-1)(-1,2)(0,2)$
DECODE
$(-1,-2)(0,1)(2,1)(-3,-2)$
THIS
3. For each set of points, plot and join the points in order to form a closed figure.
(a) $A(2,1) B(5,1) C(5,3) D(2,3)$
(b) $\mathrm{E}(-2,3) \mathrm{F}(-5,3) \mathrm{G}(-5,1)$
(c) $H(-3,1)((-1,1) J(-1,-1) K(-3,-1)$
(d) $L(2,1) M(5,1) N(4,-3) P(1,-3)$

4. Match the words in the box with the most appropriate expression below.

coordinates	origin	scale
y-coordinate	horizontal axis	ordered pair
x-coordinate	vertical axis	coordinate plane

(a) A grid with two perpendicular lines \qquad plane
(b) tells how far the point is along the x-axis \qquad
(c) the numbers on the axes scale.
(d) tells how far the point is along the y-axis \qquad y-coordinate
(e) also known as the x-axis \qquad horizontal axis
(f) the point where the axes cross \qquad
(g) a point in a plane represented by an ordered pair of numbers \qquad
(h) two numbers, written in order within a set of brackets and separated by a comma ordered pair
(i) also known as the y-axis \qquad axis
6. Exactly where in coordinate plane are the following ordered pairs located? (e.g. Quadrant 1, 2, 3, or 4; origin; \boldsymbol{x}-axis; \boldsymbol{y}-axis)

1) $(27,-89) Q 4$
2) $(0,-19) \quad y$-axis
3) $\quad(14,34) \quad Q 1$
4) $(0,0)$ origin
5) $(-66,-23) \quad Q 3$
6) $(-1,103) \quad Q 2$
7) $(126,-12) \quad Q 4$
8) $(-18,0) \quad x$-axis
9) $(352,-353)$
$Q 4$

5.1 What Happened After a Burglar Broke Into a Tuba Factory?

Each ordered pair at the bottom of the page.represents a.point on the coordinates below. Above each ordered pair, write the leiter that appear's at that'point.
 $\frac{H}{(5,4)} \frac{E}{(10,2)} \frac{\omega}{(-3,7)} \frac{A}{(-10,5)} \frac{S}{(-2,-5)} \frac{C}{(-3,-10)(3 ;-2)} \frac{R}{(8,-4)(6,0)(0,5)} \frac{1}{(-4,0)(0,-11)} \frac{E}{(2,2)}$ $\frac{\omega}{(-5,-8)} \frac{1}{(-7,1)} \frac{T}{(7,-9)} \frac{H}{(-9,0)(-7,-2)} \frac{W}{(4,-8)} \frac{\dot{E}}{(6,7)} \frac{N}{(-5,9)} \frac{T}{(0,-7)(-8,-6)(0,10)} \frac{Y}{(0,0)} \cdot \frac{E}{(9,5)}$
$\therefore \frac{5}{(9,0)} \frac{T}{(5,-6)} \frac{0}{(-9,8)(-11,-11)(4,1)(0,8)} \frac{N}{(-4,3)(9,-7)(-2,0)} \frac{B}{(8.5 ; 11)} \frac{5}{(0,-3.5)} \frac{5}{(1.5 ; 0)}$
rate of change gradient

Namer \qquad

Example 1

These diagrams represent two staircases:

We move 2 blocks right: The run. is :2.
We move un p 2 blocks. The rise is 2 :
Suppose we lay a board on each staircase.

We move 1 block right and 1 block wp: The run is 1 and the rise is 1

What do you notice about the steepness of each board?

Example 2

Q On the follow ing grid daw a staircase where each step has a rise of 6 and arum of 2
Wi Without changing the steepness, draw additional. blocks so that, each horizontal step is only a block:
O On the new staircase as we move I block right, we move \qquad blocks up: This number is the slope.
What is the slope of the staircase? \qquad
ie Braw a board that will te on your stair ease,
a Explain why moving 2 wits right and 6 unitsiup. has the same steepiress as moving 1 unit right and Bunts up. Simplify

ca When the rise is 6 and the r is 2 , what is the slope?

$$
m=3
$$

When calculating slope on a grid you need to be careful of positive and negative values.

* On arid we always count the ruin from left to fight dust like we ready)

So the tun is always positive!!

Example 6

Determine the slope of each tine on the following grid.

It he I rises from let to right, so it has a positive. slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{6}=\frac{1}{2}$

Line drops from left to night, so it has a negative

$$
\text { stope }=\frac{\text { rige }}{\text { run }}=-\frac{6}{1}=-6
$$

Line 3: doesn"t rise or fall from Tet to right so hts rise is: (0)

$$
\begin{aligned}
& \text { Slope: }=\frac{0}{4}=0 \quad \text { slope of a horizontal } \\
& \text { line is } 0
\end{aligned}
$$

Dine 4 has a rise of 4 and and OO Therefore the slope is UNDEFINED.
Conclusions

> slope of a vertical line is undefined.

Any the rising to the right has a positive slope. A ty fine falling to the right has a. negative. slope: Any horizontal line hays a slope: of \qquad . Any vertical line has: undefined . Stope.

Slope is calculated using the formula

$$
\text { Slope }=\frac{\text { rus }}{\text { run }}
$$

Slope measures how: \qquad steep. a Mine is
A higher value for slope represents a steeper line. A lower value for slope represents a less steeper inc.

Grid Lines:
The vertical and \qquad lines which form the grid on graph paper.

Grid Point: Any point of \qquad of two \qquad
\qquad on graph paper.

Slope: \quad A number which represents the \qquad or \qquad of a line.

AMOUNT OF SLOPE:

Moderate Slope: \qquad makes an angle of \qquad with the horizontal.

Gentle Slope: \qquad makes an angle between \qquad and \qquad with the horizontal.

Steep Slope: \qquad makes an angle between \qquad and \qquad with the horizontal.

Zero slope: \qquad makes an angle of \qquad with the horizontal.

DIRECTION OF SLOPE: Lines many be vertical, horizontal, uphill or downhill in direction.

Uphill: Ascending, \qquad or \qquad to the right.

Downhill: \qquad , or \qquad to the right.

Steps For Finding A Numerical Value For Slope:

1. Find two grid points on the line and mark them with dots.
2. Start at the left grid point.
3. Use a ruler to draw a horizontal line to the right from this point until you are vertically above or below the second grid point. This horizontal line is the run.
4. Now draw a vertical line from the right end of the run either up or down to connect to the second grid point. This vertical line is the rise.
5. Count the graph squares to determine the length of the run and the rise.
6. The run is always positive.
7. The rise is positive if it is going upwards from the run, or is negative if the rise is going downwards from the run.
8. $S L O P E=\frac{\text { rise }}{\text { run }}$
9. Reduce the answer for slope to a fraction in lowest terms - avoid decimals or mixed numbers.

SUMMARY:
Uphill Slope: \qquad corresponds to slope values which are \qquad .

Downhill Slope: \qquad corresponds to slope values which are \qquad .

Moderate Slope: \qquad corresponds to a slope value of \qquad or \qquad .

Gentle Slope: \qquad .corresponds to slope values which are \qquad than \qquad .

Steep Slope: \qquad corresponds to slope values which are \qquad than \qquad .

Zero slope: \qquad corresponds to a slope value of \qquad .

Graph \# \qquad has the steepest slope of all because its slope value is \qquad .

Graph \# \qquad has the gentlest slope of all because its slope value is \qquad .

Mathematics 9
The Slope of a Line
pg. 2
(a)

Date:

(1) For each of the slopes given in the table below:
a) Complete the rows for amount of slope and direction of slope in words.
b) Give the rise and the run in the spaces provided.

Graph \#:	1	2	3	4	5	6
Slope	$\frac{4}{5}$	$\frac{5}{2}$	$-\frac{5}{3}$	$-\frac{1}{3}$	$\frac{4}{1}$	$\frac{-3}{1}$
Direction Of Slope	UP	$0 p$	$d a i 0$	$d o w n$	$0 p$	down
Amount Of Slope	$4 / 5$	$5 / 2$	$-5 / 3$	$-1 / 3$	$4 / 1$	$-3 / 1$
Run (always positive)	5	2	3	3	1	1
Rise (positive ornegative)	4	5	-5	-1	4	-3

(2) On the 6 graphs below, plot lines which pass through the origin that have the given slopes.

Steps: i) Place your pencil at the requested starting point.
ii) Use a ruler draw the run first. Since this is always positive, it will always be drawn to the right from the starting point.
iii) Now draw the rise from the end of the run. ($U p$ if positive, down if negative.)
iv) Draw a line through the ends of the rise and run and extend the line to the edges of the grid.

For the remaining graphs notice that the requested start point for the run is no Ionger at the origin.

 7. slope $=\frac{2}{3}$; start at $(1,1)$	 8. slope $=-\frac{11}{4}$; start at $(2,6)$	 9. slope $=-\frac{1}{5} ;$ start at $(-5,5)$
$10 . \text { slope }=\frac{5}{4} ; \text { start at }(-4,0)$	 11. slope $=-6$; start at $(0,5)$	 12. slope $=5 ;$ start at $(0,-3)$
 13. slope $=\frac{3}{5}$; start at $(-4,-7)$	 14. slope $=-\frac{1}{2} ;$ start at $(-7,1)$	 15. slope $=\frac{5}{7}$; start at $(-1,-3)$

To Check Answers:

If drawn correctly, your line will also go through the point indicated below. (A near miss probably means that you just need to be more careful when lining up your ruler to draw the line-try it!)

1. $(-5,-4)$
2. $(-2,-5)$
3. $(-3,5)$
4. $(-6,2)$
5. $(2,8)$
6. $(-1,3)$
7. $(7,5)$
8. $(6,-5)$
9. $(5,3)$
10. $(-8,-5)$
11. $(2,-7)$
12. $(-1,-8)$
13. $(6,-1)$
14. $(1,-3)$
15. $(-8,-8)$
