1.11 Square Roots and Irrational Numbers

To square a number, multiply it by it Elf.

For example, what is 3 squared?

3 squared =

;	-	_3_	-== 1
1	i	2	З
3	4	5	6
	7	8	9

$$= 3 \times 3 = 9$$

"Squared" is often written as a little 2 like this:

"e this means "aguarod"

$$4^2 = 16$$

This says: 4 squared equals 16

quare Roots

A square root & inverse of square

3 squared is 9, so Square pot of 9 15 3

The Square Root Symbol

This is the special symbol that means "square root. It is called the *radical*.

We use it like this:

$$\sqrt{9} = 3$$

We would say "square root of 9 equals 3"

A square root of a number is a value that can be multiplied by itself to give the original number. A square root of 9 is 3, because when 3 is multiplied by itself we get 9.

It is like asking: What can we multiply by itself to get this?

- But wait a minute! Can't the square root also be -3? Because $(-3) \times (-3) = 9$ too.
- Well the square root of 9 could be -3 or +3.

But when we use the radical symbol $\sqrt{}$ we only give the positive result.

Perfect Squares

The perfect squares are the squares of the whole numbers:

Perfect Squares: 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225...

In other words, square roots of perfect square is whole number.

Ex. 1)

i) $\sqrt{81}$ ii) $2\sqrt{25}$ iii) $-\sqrt{256}$ iv) $\sqrt{1.44}$

v) $\sqrt{16}$

- vi) $\sqrt{25-16}$
- *The radical sign is like a bracket.

 $= \phi \qquad = \sqrt{9}$ = 3

vii) $\sqrt{-49}$

NOT POSSIBLE (SQUARE ROOT OF A NEGATIVE NOT DEPINED)

Note: Numbers like $\sqrt{5}$ and $-\sqrt{17}$ cannot be written as a terminating or repeating decimal. They are called **irrational** numbers.

Ex. 2) Evaluating to the nearest tenth:

1)
$$\sqrt{41}$$

ii)
$$-\sqrt{191}$$

iii)
$$4\sqrt{2} + 3\sqrt{5}$$

iv)
$$\frac{4\sqrt{7}}{3}$$

Ex. 3) Evaluate for
$$a = 5$$
, $b = -2$

$$2.1\sqrt{a^2-2ab+b^2}$$

$$= \sqrt{25-2(5)(2)} + 4$$

$$= \sqrt{25+20} + 4$$

Ex. 4) The area of a square is $98cm^2$, what is the length of each side? What is the perimeter?

N98 = 9,9 = length & Width

Date:	

1.12 Fractions, Decimals, Percent

Decimals, fractions and percents are just different ways of showing the same value.

A half can be written as:

A fraction: ______

A decimal: 0.50

A percent: 50%

A quarter can be written as:

A fraction: _______

A decimal: O.Z.

A percent: 25/.

Conversions:

Fraction to a Decimal:

Divide Clong division

Decimal to Fraction:

1. Write the decimal : 1

2. moltiply top and bottom by

10,100,1000,... (depending on

0.1= 10,0.12=12 decimal)

3. Reduce to lowest terms

(divide by common factor)

4. Pepresent as a mixed fraction if numerator > denominator

Convert 0.75 to a fraction = 0.75

$$\frac{15}{100} \stackrel{?}{=} \frac{25}{15}$$