Day 10: 1.6 – Slopes of Tangents & Instantaneous Rate of Change

Example One: Let's Investigate!

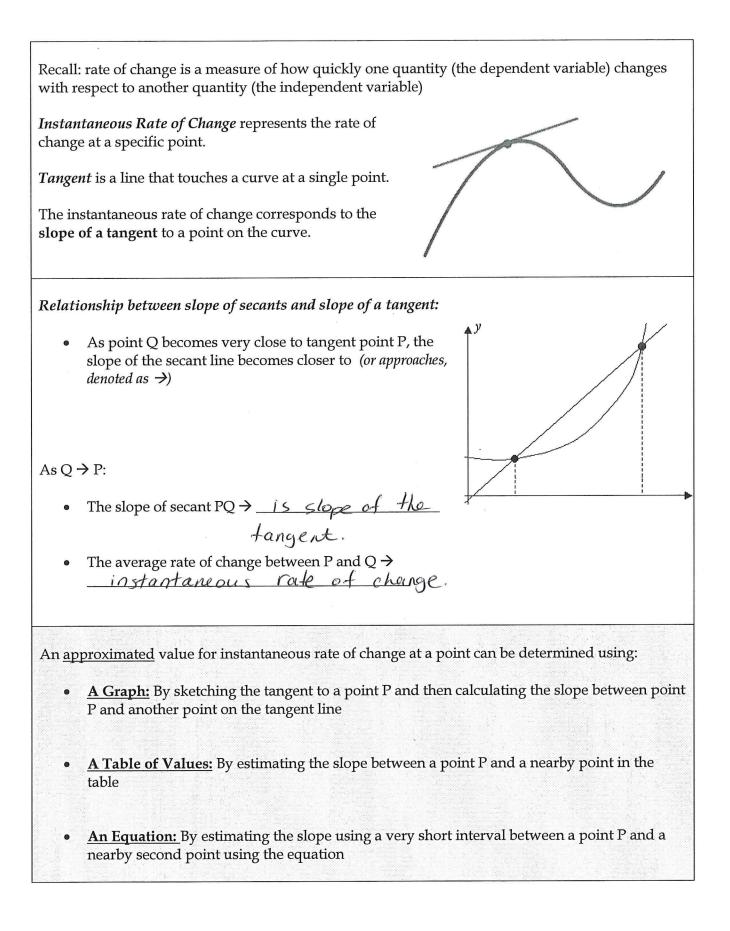
A golf ball lying on the grass is hit so that its initial vertical velocity is 25m/s. The height, *h*, in metres, of the ball after *t* seconds can be modelled by the quadratic function $h(t) = -4.9t^2 + 25t$.

Interval	Δh	Δt	Average rate of change: $\frac{\Delta h}{\Delta t}$			
$1 \le t \le 2$	= h(2) - h(1) = [-4.9(2) ² + 25(2)] - [-4.9(1) ² + 25(1)] = 30.4 - 20.1 = 10.3	= 2 - 1 = 1	$=\frac{10.3}{1}$ = 10.3 <i>m</i> / <i>s</i>			
$1 \le t \le 1.1$	=h(1.1) - h(1) = [-4.9(1.1) ² +25(1.1)] - 20.1 = 21.671 - 20.1 = 1.971	=1.1-1 = 0.1	$= \frac{1.471}{0.1}$ = 14.71 m/s			
1≤ <i>t</i> ≤1.01	$= \left[-4.9 \left(1.01\right)^{2} + 25(1.01)\right] - 20.1$ = 20.25-20.10 = 0.15		= 0.15 0.01 = 15 m/s			
1≤ <i>t</i> ≤1.001		= 1.001-1 = 0.001	$= 0.015 \\ -0.001 \\ = 15 m/s$			

a) Copy and complete the table for h(t).

- b) Explain how the time intervals in the first column are changing Decreasing each time [getting smaller and smaller]
- c) Describe how the average rate of change values in the fourth column are changing in relation to the time intervals

AROC are getting closer and eluser to 15



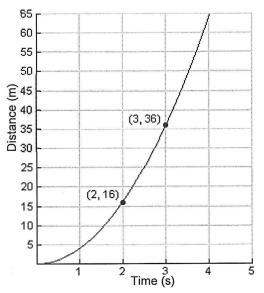
Example Two: Using a graph

The graph shows the distance traveled by a parachutist in the first 5 seconds after jumping out of a helicopter.

Estimate the parachutist's velocity 2 seconds after jumping by sketching a tangent. (*Note: velocity is speed with direction*) (2, 16) (2.3, 26)

$$IROC = \frac{20 - 16}{2 \cdot 3 - 2}$$

= $\frac{4}{0.3}$
= 13.3 m/s.



Example Three: Using a table of values

A data recorder measured the distance travelled by the parachutist every half second for the first three seconds of the jump.

Estimate the parachutist's velocity 2 seconds after jumping by using the table of values $C_{Canced int}$ $C_{Canced int}$

Time (s)	Distance (m)	
0.0	0	
0.5	1	
1.0	4	
1.5	9	
2.0	16	
2.5	25	
3.0	36	

$$m_{1} = \frac{16 - 9}{2 = 1.5} = \frac{7}{0.5} = 14$$
(Apllowing interval) 2 < t < 2.5

$$M_{2} = \frac{25 - 16}{2 = 0.5} = \frac{9}{0.5} = 18$$

$$m = \frac{m_1 + m_2}{2} = \frac{14 + 18}{2} = 16 m/s.$$

Example Four: Using an equation

The distance travelled by the parachutist, d(t), after t seconds can be modelled by the function $d(t) = 4t^2$

Estimate the parachutist's velocity 2 seconds after jumping by calculating the speed over a very small interval near 2 seconds.

Interval	Δt	Δd	AROC
$2 \le t \le 2.1$	= 0.1	$= \left[4(2 \cdot 1)^{2} \right] - \left[4(2)^{2} \right]$ $= 17.64 - 16$ $= 1.64$	$= \frac{1.64}{0.1}$ = 16.4 m/s
$2 \le t \le 2.01$	= 2.01-2	= 16.1604 - 16	= 0.1604 $\overline{0.01}$ = 16.04
$2 \le t \le 2.001$	President ($= [4(2.00)]^2] - [4(2)^2]$ = 16.016004 - 16 = 0.016004	= 0.016004 6.001 = 16.004

Let's Reflect:

Which of the three methods do you think would be the most reliable?

Using equation as Δt can be very small and we can get accurate y coordinates compared to estimatives. $IROC = \frac{f(a+b) - f(a)}{b}$ [$b \to 0$]