Day 10: 1.6 - Slopes of Tangents & Instantaneous Rate of Change

Example One: Let’s Investigate!

A golf ball lying on the grass is hit so that its initial vertical velocity is 25m/s. The height, /1, in metres, of the
ball after ¢ seconds can be modelled by the quadratic function A(f) = —4.91% +25t.

a) Copy and complete the table for A(¢).
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b) Explain how the time intervals in the first column are changing
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c) Describe how the average rate of change values in the fourth column are changing in relation to the
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Recall: rate of change is a measure of how quickly one quantity (the dependent variable) changes
with respect to another quantity (the independent variable)

Instantaneous Rate of Change represents the rate of
change at a specific point.

Tangent is a line that touches a curve at a single point.

The instantaneous rate of change corresponds to the
slope of a tangent to a point on the curve.

Relationship between slope of secants and slope of a tangent:

e As point Q becomes very close to tangent point P, the
slope of the secant line becomes closer to (or approaches,
denoted as )

AsQ>P:
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An approximated value for instantaneous rate of change at a point can be determined using:

e A Graph: By sketching the tangent to a point P and then calculating the slope between point

P and another point on the tangent line

e A Table of Values: By estimating the slope between a point P and a nearby point in the
table

e An Equation: By estimating the slope using a very short interval between a point P and a
nearby second point using the equation
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Example Two: Using a graph

The graph shows the distance traveled by a parachutist in
the first 5 seconds after jumping out of a helicopter.

Estimate the parachutist’s velocity 2 seconds after jumping
by sketching a tangent. (Note: velocity is speed with

direction) (2, ,()') ¢ 2. 3, 2o )
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= 133 m/s.

Example Three: Using a table of values
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A data recorder measured the distance travelled by the parachutist every half second for the first three seconds

of the jump.
Estimate the parachutist’s velocity 2 seconds after jumping by using the table of values D o B e
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Example Four: Using an equation
The distance travelled by the parachutist, d(t), after t seconds can be modelled by the function d(t) = 4t?

Estimate the parachutist’s velocity 2 seconds after jumping by calculating the speed over a very small interval
near 2 seconds.
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Let’s Reflect:
Which of the three methods do you think would be the most reliable?
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