5.10: DIRECT vs. PARTIAL VARLATION

)

Example 1:

Stephen works at a hardware store and earns $\$ 9.25$ for each hour he works. Let E represent his Earnings, and h represent the number of hours he works.

$$
E=9.25 h . d d^{d d^{x}}
$$

Example 2:
Popcorn pops, on average, at a rate of 4 kernels per second. Let P represent the amount of popcorn kernels popped, and s represent the number of seconds.
$p=4 s$.

Example 3:
Branley works in sales and earns commission of 2% on the merchandise she sells. Define your variables and write an equation. E: earnings

$$
S^{\prime \prime} \text { : sales. }
$$

$E=0.02 \mathrm{~s}$

These are the examples of direct vacation. In example 1, E varies of hours. The graph of a direct variation relationship is a straight line through the

$$
\text { the form } \begin{aligned}
& y=m x \rightarrow \\
& \begin{array}{l}
b=0 \\
\text { (initial is } 0 \text {) }
\end{array}
\end{aligned}
$$

directly with the number

 origin. The equation is in $(0,0)$Example 5:
Rhys' bank account has $\$ 500$. Each month he spends $\$ 50$. Let B represent his balance, and let m represent the number of months that have passed.

$$
B=-50 m+500
$$

Example 6:

Jessee repairs computer problems and charges a $\$ 50$ service fee plus $\$ 30$ per hour. Let F represent her total fee, and h represent the number of hours worked.

$$
F=30 h+50
$$

These are the examples of partial variation. . In example 5, B varies partially with the number of months. The graph of a partial variation relationship is a straight line that does not pass through origin. The equation is in the form $y=m x+b ; \quad b \neq 0$

C. charge p: people

DIRECTVARIATION

xample 1
The new Mazda 3 Sport has gas mileage of 6 km per litre on highway. This can be modelled by the algebraic equation $d={ }^{\prime} 6 n$, where d represents the distance you can travel and n represents the number of litres you use.

Complete the table of values for the distance per number of litres and use your table to create a graphical model of this scenario.

n	$d-6 \mathbf{n}$
0	0
1	6
2	12
3	18
4	24
5	30

Example 2

Dooko Mobile Company does not charge any monthly fees, but charges $\$ 0.25$ per minute of cell phone use.
Model this scenario algebraically.

$$
C=0.25 \mathrm{~m}
$$

Create a table of values using your equation and create a graphical model.

m	C
0	0
20	5
40	10
60	15
80	20
100	25

PARTIAL VARIATION

Example 1
A taxi company charges a flat rate of $\$ 2.50$ plus $\$ 0.35 / \mathrm{km}$. The cost can be found using the equation $c=0,35 k+2.5$, where C represents the cost and k represents the number of kilometres.

Using the equation, complete a table of values. Using your table of values, create the graph.

k	c
0	2.50
20	9.50
40	16.50
60	23.50
80	30.50
100	37.50

Example 2

KeeDe Mobile Company charges $\$ 20$ per month and an additional $\$ 0.25$ per minute of long distance calls. Model this scenario algebraically. C: Charge m. minutes.

$$
C=0.25 m+20
$$

Create a table of values using your equation and create a graphical model.

m	c
0	20
10	22.50
20	25
30	27.50
40	30
50	32.50

