1. There are 2 rational expressions, P / Q and R / S, where $Q=x^{2}-9, R=x+1$, and $S=x^{2}+x-6$.

If $P / Q \div R / S=A / B$, where $A=4 x^{2}-13 x+10$, determine an expression for P and B.

$$
\left.\begin{array}{lrl}
\frac{P}{Q} \div \frac{R}{S}=\frac{A}{B} & 4 x^{2}-13 x+10 \\
& =4 x^{2}-8 x-5 x+10 \\
& =4 x(x-2)-5(x-2) \\
\frac{P}{x^{2}-9} \div \frac{(x+1)}{x^{2}+x-6}=\frac{4 x^{2}-13 x+10}{B} & =(x-2)(4 x-5) \\
\frac{P}{(x-3)(x+3)} \div \frac{(x+1)}{(x-2)(x+3)}=\frac{(x-2)(4 x-5)}{B} & \ddots \cdot \frac{(x-2)(x+3)}{(x+1)}=\frac{(x-2)(4 x-5)}{B} & P
\end{array}\right)
$$

2. Rowing at $8 \mathrm{~km} / \mathrm{h}$ in still water, Ring and Bhanu take 16 hours to row 39 km down a river and 39 km back. Find the speed of the current.
down (faster) upslaver)

distance	speed	time
39	$8+c$	$\frac{39}{8+c}$
39	$8-c$	$\frac{39}{8-c}$

$$
\text { Total time }=\text { Time down }+ \text { lime up }
$$

$$
16 \frac{(8-c) 39}{(8-c)} \frac{(8+c) 39}{(8+c)}+\frac{(8+c)(8-c)}{(8-c)}
$$

$$
\alpha C_{D}(8+c)(8-c)
$$

$$
\begin{aligned}
16 & =\frac{39(8-c)}{(8-c)(8+c)}+\frac{39(8+c)}{(8-c)(8+c)} \\
16 & =\frac{312-39 c+312+39 c}{64-c^{2}} \\
16^{\left(64-c^{2}\right)} & =\frac{624}{64-c^{2}} \cdot\left(64-c^{2}\right) \\
1024-16 c^{2} & =624 \\
1024-624 & =16 c^{2} \quad c \\
\frac{400}{16} & =\frac{16 c^{2}}{16} \quad+\sqrt{25}=c
\end{aligned}
$$

\therefore The speed of the current is $5 \mathrm{~km} / \mathrm{h}$
3. A rectangular prism has length $=\frac{2 x-5}{x+4}$, width $=\frac{3 x+2}{3 x-1}$ and height $=\frac{x+4}{3 x+1}$ all in metres.
a) Determine a simplified expression for the volume of the rectangular prism. Express your answer as a quotient of two polynomials in standard form, and state any restrictions.
b) Determine the volume when $x=4$ metres.
a)

$$
\begin{aligned}
V & =\frac{(2 x-5)}{(x+4)} \cdot \frac{(3 x+2)}{(3 x-1)} \cdot \frac{(x+4)}{(3 x+1)} \\
& =\frac{(2 x-5)(3 x+2)}{(3 x-1)(3 x+1)} \\
& =\frac{6 x^{2}+4 x-15 x-10}{9 x^{2}-1} \\
& =\frac{6 x^{2}-11 x-10,1 / 3}{9 x^{2}-1}
\end{aligned} \begin{aligned}
\frac{x+4}{3 x+1}
\end{aligned}
$$

4. There are 2 rational expressions, P / Q and R / S, where $Q=x^{2}-9, R=x+1$, and $S=x^{2}+x-6$. If $P / Q+R / S=A / B$, where $A=4 x^{2}-12 x+5$, determine an expression for P and B.

$$
\begin{aligned}
& \frac{P}{Q}+\frac{R}{S}=\frac{A}{B} \\
& \frac{P}{x^{2}-9}+\frac{(x+1)}{x^{2}+x-6}=\frac{4 x^{2}-12 x+5}{B} \\
& \frac{P}{(x-3)(x+3)}+\frac{(x+1)}{(x-2)(x+3)}=\frac{(2 x-1)(2 x-5)}{B} \\
& \begin{array}{l}
\frac{P(x-2)}{(x-3)(x+3)(x-2)}+\frac{\stackrel{(x+1)(x-3)}{\text { FolL }}}{(x-2)(x+3)(x-3)}=\frac{(2 x-1)(2 x-5)}{B}=\frac{(2 x-1)(2 x-5)}{B} \\
\frac{P(x-2)+x^{2}-2 x-3}{(x-3)(x+3)(x-2)}
\end{array} \\
& P(x-2)+x^{2}-2 x-3=4 x^{2}-12 x+5 \\
& P(x-2)=4 x^{2}-12 x+5-x^{2}+2 x+3 \\
& \frac{p(x-2)}{(x-2)}=\frac{3 x^{2}-10 x+8}{(x-2)} \rightarrow \text { let's factor it } \\
& \therefore P=\frac{(3 x-4)(x-2)}{(x-2)} y \\
& \text { con simplify } \\
& P=(3 x-4)
\end{aligned}
$$

Rough Work

$$
\begin{aligned}
& 4 x^{2}-12 x+5 \\
= & \frac{(4 x-2)(4 x-0)}{4} \quad N|A| N \\
= & \frac{2(2 x-1)(2)(2 x-5)}{5} \\
= & (2 x-1)(2 x-5) \\
& (x-3)(x+3)(x-2) \\
& (x-2)(x+3)(x-3) \\
& -\frac{A}{3}+3 x^{2}-10 x+8 \\
= & \frac{(3 x-4)(3 x-6)}{3} \\
= & \frac{(3 x-4)(B)(x-2)}{3} \\
= & (3 x-4)(x-2)
\end{aligned}
$$

5. On the 42 km go-kart course, Arshia drives $0.4 \mathrm{~km} / \mathrm{h}$ faster than Sarah, but has engine trouble and stops for $1 / 2$ hour. She arrives 15 minutes after Sarah at the end of the course. How fast did each girl drive?

| Prep | distance | speed | time |
| :--- | :---: | :---: | :---: | :---: |
| Sarah | 42 | s | $\frac{42}{5}$ |
| Arshla | 42 | $5+0.4$ | $\frac{42}{5+0.4}+\frac{1}{2} \rightarrow$ engine an trable |\quad Lets"

More We know that Arshia took another 15 min

$$
\begin{aligned}
& \text { Which is } 15 / 60 \text { hour; therefore, we can soy }, 1 / 4 \\
& \text { Arshia's lime equals Sarah's time }+\frac{15}{60}, ~ \\
& \left.\begin{array}{rl}
\frac{42}{5+0.4}+\frac{1}{2} & =\frac{42}{5}+\frac{1}{4} \\
\frac{1}{2}-\frac{1}{4} & =\frac{42}{s}-\frac{42}{s+0.4} \\
\frac{1}{4} & =\frac{42(s+0.4)}{s(s+0.4)}-\frac{42 s}{s(s+0.4)} \\
\frac{1}{4} & =\frac{42 s+16.8-42 s}{s^{2}+0.4 s}
\end{array}\right] \text { cross }
\end{aligned}
$$

$$
\begin{aligned}
& s^{2}+0.4 s=67.2 \\
& s^{2}+0.4 s-67.2=0 \rightarrow \begin{array}{l}
\text { use quadratic } \\
\text { formula } \\
\text { PRACTICE }
\end{array}
\end{aligned} \begin{gathered}
s=8 \text { or } s=- \\
\text { Torah } 8 \mathrm{~km} / \mathrm{h} \\
\text { Arshis } 8.4 \mathrm{~km} / \mathrm{h}
\end{gathered}
$$

1. An open cardboard box with a square base with a side of x cm has a volume of $100 \mathrm{~cm}^{3}$.
a. Express the height of the box, h, in terms of x.
b. Express the surface area of the 5 sides of the box in terms of x.
2. A rectangular board has an area of $6000 \mathrm{~cm}^{2}$ and a width of $w \mathrm{~cm}$.
a) Write an expression for the length of the board.
b) Write an expression for the perimeter of the board.
c) If the width is increased by x cm , write an expression for the new perimeter of the board.
d) Write an expression for the change in perimeter $\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)$.
3. One lap of a motorcycle race is 650 m . At the start of the race, Genna sets off 4 seconds after Tom does, but she drives her motorcycle $5 \mathrm{~m} / \mathrm{s}$ faster and finishes the lap 2.5 seconds sooner than he does. Find their speeds.
4. Marissa and Jovanna enter a 200-km bike race. Marissa cycles $5 \mathrm{~km} / \mathrm{h}$ faster than Jovanna, but her bicycle gets a flat tire, which takes $1 / 2$ hour to repair. If the 2 girls finish the race in a tie, how fast was each girl cycling?
5. An open cardboard box with a square base with a side of $x \mathrm{~cm}$ has a volume of 100 cm 3 .
a) Express the height of the box, h, in terms of x.
b) Express the surface area of the 5 sides of the box in terms of x.

b)
6. A rectangular board has an area of 6000 cm 2 and a width of $w \mathrm{~cm}$.
a) Write an expression for the length of the board.
b) Write an expression for the perimeter of the board.
c) If the width is increased by $x \mathrm{~cm}$, write an expression for the new perimeter of the board.
d) Write an expression for the change in perimeter ($\mathrm{P} 2-\mathrm{P} 1$).

a)

$$
\begin{aligned}
\text { Area } & =\text { Length } \times \text { Width } \\
6000 & =l \times w \\
\therefore L & =\frac{6000}{W}
\end{aligned}
$$

b) Perimeter $=2(l+\omega)$

$$
\begin{aligned}
& P_{1}=2\left(\frac{6000}{\omega}+\omega\right) \\
& =2\left(\frac{6000+\omega^{2}}{\omega}\right) \\
& \therefore P_{1}=\frac{2 w^{2}+12000}{w} \\
& \text { c) } P_{2}=\frac{2(\omega+x)^{2}+12000}{\omega+x} \Rightarrow P_{2}=\frac{2 \omega^{2}+4 \omega x+2 x^{2}+12000}{\omega+x} \\
& \text { d) } P_{2}-P_{1}=\frac{\omega\left(2 \omega^{2}+4 \omega x+2 x^{2}+12000\right.}{(\omega)(\omega+x)}-\frac{\left(2 \omega^{2}+12000\right)(\omega+x)}{\omega(\omega+x)} \\
& L C D=\omega(\omega+x) \\
& =\frac{2 \omega^{5}+4 \omega^{2} x+2 x^{2} \omega+12005 \omega-2 \omega^{5}-2 \omega^{2} x-12000 w-12000 x}{\omega(\omega+x)} \\
& =\frac{2 \omega^{2} x+2 x^{2} \omega-1200 x}{\omega(\omega+x)}
\end{aligned}
$$

3. One lap of a motorcycle race is 650 m . At the start of the race, Genna sets off 4 seconds after Tom does, but she drives her motorcycle $5 \mathrm{~m} / \mathrm{s}$ faster and finishes the lap 2.5 seconds sooner than he does. Find their speeds.

Genna's time is 2.5 seconds less than Tom

$$
\begin{aligned}
& \text { Gennàs time }=\text { Tom's time }-2.5 \\
& \frac{650}{V+5}+4=\frac{650}{V}-2.5 \quad \text { collect terms on LHS } \\
& \frac{650}{V+5}-\frac{650}{v}+6.5=0 \quad L C D=V(v+5) \\
& \frac{650(v)}{(v+5)(v)}-\frac{650(v+5)}{V(v+5)}+6.5 \frac{V(v+5)}{v(v+5)}=0 \\
& 650 v-650 v-3250+6.5 v^{2}+32.5 V
\end{aligned} \quad \begin{aligned}
& \text { multidy each side } \\
& \text { by } v(v+5) \text { to jet } \\
& \text { rid of it. }
\end{aligned}
$$

1.3 $V(V+5)$
$6.5 v^{2}+32.5 v-3250=0 \quad$ reduce by 5

$$
\begin{aligned}
& 1.3 v^{2}+6.5 v-650=0 \\
& V_{1,2}=\frac{-6.5 \mp \sqrt{\left.(6.5)^{2}-4(1.3)+650\right)}}{2(1.3)} \\
& \begin{array}{l}
V_{1,2}=\frac{-6.5 \mp \sqrt{3422.25}}{2.6}
\end{array}, \begin{array}{l}
V_{1}=\frac{-6.5+58.5}{266}=\frac{52}{2.6}=20 \mathrm{~m} / \mathrm{s} \\
V_{2}=\frac{-6.5-58.5}{2.6}=-25 \mathrm{~m} / \mathrm{s} \text { cont be negotire } \\
0 \text { a Tom's speed is } 20 \mathrm{~m} / \mathrm{s}
\end{array} \\
& \text { a Tom's speed is } 20 \mathrm{~m} / \mathrm{s} \\
& \text { Use quadratic formula } \\
& \begin{array}{l}
\text { Use quadratic } \quad \begin{array}{l}
\text { tormuls } \\
a=1.3 \quad b=6.5 \quad c=-650
\end{array}
\end{array}
\end{aligned}
$$ Genies speed is $25 \mathrm{~m} / \mathrm{s}$

4. Marissa and Jovanna enter a 200-km bike race. Marissa cycles $5 \mathrm{~km} / \mathrm{h}$ faster than Jovanna, but her bicycle gets a flat tire, which takes $\frac{1}{2}$ hour to repair. If the 2 girls finish the race in a tie, how fast was each girl cycling?

Let "V" be the speed of Joupuna since Marissa is $5 \mathrm{~km} / \mathrm{h}$ foster whatever her speed is.

$$
\begin{aligned}
& \frac{200}{V}=\frac{200}{V+5}+\frac{0.5(V+5)}{1(V+5)} \\
& \frac{200}{V}=\frac{200+0.5 V+2.5}{V+5} \quad \text { Cross multiply }
\end{aligned}
$$

$$
200 v+1000=200 v+0.5 v^{2}+2.5 v
$$

$$
-0.5 v^{2}-2.5 v+1000=0
$$

Use quadratic formula to

$$
V_{1,2}=\frac{-(-2.5) \mp \sqrt{(-2.5)^{2}-4(-0.5)(1003)}}{2(-0.5)}
$$ solve for " V "

$$
\begin{aligned}
& V_{1,2}=\frac{2(-0.5)}{-1}, \\
& V_{1,2}=\frac{2.5 \mp \sqrt{2006.25}}{}, V_{1}=\frac{2.5+44.79}{-1}=-46.79 \\
& \therefore V_{2}=\frac{2.5-44.79}{-1}=42.29 \\
& \therefore \text { The speed of Jovanne is } 42.3 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

\therefore The speed of Jovanne is $42.3 \mathrm{~km} / \mathrm{h}$ Marissa is $47.3 \mathrm{~km} / \mathrm{h}$

