Day 6.

Exit Card

1. Complete the table for each of the following

	Parent Function	Amplitude	Max value	Min Value	k	Phase shift	Axis of Curve	Equation
2 a)	sinx	$1 / 2$	2.5	1.5	1	$45^{\circ} R$	$y=2$	$y=1 / 2 \sin (x-45)+2$
b)	$\cos x$	3	5	-1	2	90	2	$y=3 \cos (2(x-90))+2$
c)	$\sin x$	2	0	-4	$1 / 2$	0	-2	$y=2 \sin \left(\frac{1}{2} x\right)-2$
d)	$\cos x$	4	6	-2	1	45	2	$y=4 \cos (x-45)+2$

2. The function shown is periodic.

4

3. Describe the following transformations for $y=-10 \sin \left[3\left(x-60^{\circ}\right]+8\right.$ with respect to $y=\sin x$.

- Reflection around x-axis
- vertically stretched by a factor of 10
- horizontally compressed by a factor of $1 / 3$
- translation 60° to the right and 8 unitsup.
a. Amplitude: \qquad b. Period: \qquad 120°
c. Axis of Curve: $y=8$
d. Phase shift: 60° to the right
e. Max: \qquad f. Min: \qquad -2

5. Given $y=3 \sin [4(x-45)]+10$, determine the amplitude, period, maximum, minimum and graph the function on the grid provided. Assume $-90 \leq x \leq 90$.
6. Given $y=-2 \cos (2 x)-5$, determine the amplitude, period, maximum, minimum and graph the function on the grid provided. Assume $0 \leq x \leq 360$.
\# 5

7. A Ferris wheel has radius of 7 m . The centre of the wheel is 8 m above the ground. The Ferris wheel rotates at a constant speed of $15^{\circ} / \mathrm{s}$. The height above the ground of the only red seat can be modeled by the function $h(t)=7 \sin \left(15^{\circ} t\right)+8$.
a. What is maximum height during the first rotation?

$$
\begin{aligned}
\max & =8+7 \\
& =15
\end{aligned}
$$

b. When is the red seat at its maximum height during the first rotation?
From graph: $t=6 \mathrm{sec}$
$O R$

$$
\begin{aligned}
& \text { OR } 15=7 \sin 15^{\circ} t+8 \\
& 7=7 \sin 15^{\circ} t \\
& 1=\sin 15^{\circ} t \\
& \sin ^{-1}(1)=15^{\circ} t \\
& 90^{\circ}=15^{\circ} t \Rightarrow t=6 \sec .
\end{aligned}
$$

8. State the transformations in a correct order for the following equation,

$$
y=\frac{1}{2} \sin \left(\frac{1}{3} x-30\right)+2=\frac{1}{2} \sin \left(\frac{1}{3}(x-90)\right)+2
$$

vertically compressed by a factor if $\frac{1}{2}$

- horizontally stretched by a factor of 3 translation 90° to the right
and 2 unit up.

9. Determine the equation of the function $y=3 \sin [2(x-30)]+1$ if:
a. the function is further stretched vertically by 2 and shifted 30 degrees right.

$$
y=6 \sin [2(x-6)]+1
$$

b. the function is further stretched horizontally by 3 and shifted 2 units up.

$$
y=3 \sin \left[\frac{2}{3}(x-30)\right]+3
$$

c. the function is further stretched horizontally by $1 / 4$, vertically by 2 .

$$
y=6 \sin \left[\frac{1}{2}(-30)\right]+1
$$

