RECALL: The word "SERIES" refers to the SUM of all the terms of any kind of sequence.
$>$ Specifically, an ARITHMETIC SERIES will be the sum of the terms that form an arithmetic sequence. Similarly, a GEOMETRIC SERIES will be the sum of the terms that form a geometric sequence.

THE GENERAL FORMULA

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \quad \text { or } \quad S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

Where \boldsymbol{a} represents the is tern of the series

n represents the number of fermsinsenjes
r represents the Conner ratio

EXAMPLE 1 - For the geometric series with $a=7$ and $r=2$, determine the sum of the first 9 terms.

$$
\begin{aligned}
& S_{n}=\frac{a\left(r^{n-1}\right)}{r-1} \\
& S_{9}=\frac{7\left(2^{9}-1\right)}{2-1} \\
& S_{9}=3577
\end{aligned}
$$

The sum of first 9 terms

$$
\text { is } \quad 3577
$$

Example 2 - Determine the sum of the geometric series $15-45+135-405+\ldots-32805$

$$
\begin{aligned}
& a=15 \\
& p=-3 \\
& \text { let } t_{n}=-32805 \\
& a r^{n-1}=-32805 \\
& 15(-3)^{n+1}=-32805 \\
& (-3)^{n-1}=-2187 \\
& \rightarrow(-3)^{n-1}=(-3)^{3} \\
& n-1=7 \\
& n=8 \\
& S_{8}=\frac{15\left[(-3)^{8}-1\right]}{-3-1} \\
& S_{8}=-24600 \\
& \text { Sum of series is }-24600
\end{aligned}
$$

Example 3 - The first term of a sequence is 9 . The terms of the sequence decrease by a factor of $\frac{1}{3}$. Find S_{6}.

$$
\begin{aligned}
& \quad 9,6,4, \cdots \\
& \therefore \text { geometric } \begin{array}{l}
a=9 \\
r=2 / 3
\end{array} \\
& S_{n}=\frac{a\left(r^{n}-1\right) \quad \therefore S_{6}=\frac{9\left[\left(\frac{2}{3}\right)^{6}-1\right]}{\frac{2}{3}-1}}{S_{b}=\frac{665}{27}}
\end{aligned}
$$

EXAMPLE 4 - The first prize in a lottery is $\$ 100000$. Each succeeding winning number pays 40% as much as the winning number before it. How much is paid out in prizes if 6 numbers are drawn?

$$
\begin{aligned}
& 100000,40000,16000, \ldots \\
& \left.\begin{array}{l}
a=100000 \\
r=0.4 \\
n=6
\end{array}\right\} \text { geometric } \quad S_{6}=\frac{100000\left(0.4^{6}-1\right)}{0.4-1} \\
& \qquad S_{6}=165,984 \\
& \%, \$ 165,984 \text { was paid ant in prize money }
\end{aligned}
$$

Example 5 - Some companies use a telephone chain to notify employees that the company is closing because of bad weather. Suppose that, in the first round of calls, the first person in the chain calls four people. Each person called then makes four calls, and so on. What is the total number of people called in the first eight rounds of calls?

$$
\begin{aligned}
& 4,16,64, \ldots \\
& a=4 \\
& r=4 \\
& n=8
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
& S_{8}=\frac{4\left(4^{8}-1\right)}{4-1} \\
& S_{8}=87.380
\end{aligned}
$$

Yes indeed, 87380 people were called in the first 8 rounds

