- There are two types of special cases we will look at when graphing rational expressions
- The first is a discontinuity: this occurs when there is a "break" in the graph. This break can appear as a hole in the function
EX 1 - Sketch the graph of $f(x)=\frac{x^{2}-4}{x+2}$:

$$
\left.\begin{array}{rl}
& =\frac{(x-2)(x+2)}{x+2} \\
& =x-2 \\
\therefore x & =-2 \\
y & =-2-2 \\
& =-4
\end{array}\right\} \text { HoLE in the } \quad \text { graph. }
$$

EX 2 - Sketch the graph of $f(x)=\frac{2 x^{2}-5 x-3}{x^{2}-x-6}$

$$
\begin{aligned}
& f(x)=\frac{2 x+1}{x+2}, x \neq-2,3 . \\
& V A: x=-2 \\
& \text { HA: } y=2 \\
& \text { PAint: } x=-1 / 2 \quad \text { DOLE } \\
& y \text {-int: } 1 / 2
\end{aligned}
$$

- The second special case is a different type of asymptote.
- Another asymptote other than vertical and horizontal is called a slant or oblique asymptote. This occurs if the degree of the numerator is one greater than that of the denominator
- A function will never have both oblique and horizontal asymptotes.
- To find the equation of the oblique asymptote, we use long division (the equation is the quotient)

EX 3 - Sketch the graph of $f(x)=\frac{2 x^{2}-x-6}{2 x-1}$

$$
\begin{gathered}
2 x - 1 \longdiv { 2 x ^ { 2 } - x - 6 } \\
\therefore \frac{x x^{2}-x}{-6} \\
\therefore f(x)=x \frac{-6}{2 x-1}
\end{gathered}
$$

$\therefore y=x$ is the oblique asymptote.

$$
\begin{aligned}
& y \text {-int: } 6 \\
& x \text {-int: } 2 x^{2}-x-6=0 \\
& (2 x+3)(x-2)=0 \\
& x=-3 / 2,2 \\
& x \rightarrow \frac{1}{2}+y \rightarrow-\infty \\
& \sqrt{V}: \quad x=1 / 2 \\
& x \rightarrow \frac{1}{2}=y \rightarrow+\infty
\end{aligned}
$$

Practice:

$$
\begin{aligned}
& \text { 1) } \begin{array}{l}
f(x)=\frac{x^{2}-16}{x^{2}+9 x+20}=\frac{(x-4)(x+4)}{(x+4)(x+5)} \\
=\frac{x-4}{x+5} \quad \text { Hole }
\end{array}=(-4,-8)
\end{aligned}
$$

$1)$

$$
H A: \quad y=1
$$

$$
V A: \quad x=-5
$$

$$
x-i n t: 4
$$

$$
y \text {-int: }-4 / 5
$$

D: $\{x \in \mathbb{R} \mid x \neq-5,-4\}$

$$
R=\{y \in \mathbb{R} \mid y \neq 1,-8\}
$$

$$
\begin{aligned}
& \text { 2) } \begin{array}{l}
f(x)=\frac{x^{2}+2 x-3}{x+1}=(x+1) \frac{-4}{x+1} \\
\text { VA: } x=-1
\end{array} \text { (x=-1}
\end{aligned}
$$

oblique: $\frac{x+1}{x^{2}+2 x-3}$

$$
\begin{array}{r}
\frac{x^{2}+x}{x+1} \begin{array}{r}
x^{2}+2 x-3 \\
\frac{x+1}{-4}
\end{array}
\end{array}
$$

x-int: $\quad x^{2}+2 x-3=0$

$$
\begin{gathered}
(x+3)(x-1)=0 \\
x=-3,1
\end{gathered}
$$

y-int: -3

