Day 4: 3.3-Quotient of Linear Functions: $f(x)=\frac{a x+b}{c x+d}$

> This section will be looking at rational functions with linear expressions in both the numerator and the denominator. Because there is a variable in both the numerator and denominator, this will affect both the vertical and horizontal asymptotes, as well as the domain and range.
> We will graph rational functions of the form $f(x)=\frac{a x+b}{c x+d}$ using the same steps as in 3.2:
> a. Determine the asymptotes
> b. Determine the $x \& y$ intercepts
> C. Determine where the function is positive or negative (lies above or below the x-axis) by using an interval table

EX 1 -Determine the key features of the following function, and use the key features to graph the

$$
\text { function. } f(x)=\frac{x+4}{x-2}
$$

a. Determine the asymptotes
b. Determine the intercepts

c. Determine where the function is positive or negative by using an interval table

Positive: $x \in(-\infty,-1) \cup(2, \infty)$

EX 2 -Determine the key features of the following function, and use the key features to graph the
$x-\sin : \quad x=\frac{1}{2}$ function. $f(x)=\frac{2 x-1}{x+1}$
y-int: $y=\frac{2(0)-1}{0+1}=-1$

HA: $\quad y=2$

$$
\begin{array}{ll}
x \rightarrow \infty & y>2 \\
x \rightarrow-\infty & y \rightarrow 2^{+}
\end{array}
$$

$$
\begin{aligned}
& \text { VA: } \quad x=-1 \\
& x \rightarrow-1^{+} \quad y \rightarrow-\infty \\
& x \rightarrow-1^{-} \quad y \rightarrow+\infty
\end{aligned}
$$

EX 3 -Compare the following graphs.
Make conclusions on the effects of $a, b, c, \& d$ on rational functions of the form $f(x)=\frac{a x+b}{c x+d}$:

$j(x)=\frac{2 x+1}{4 x+1}$

Compare using key features: intercepts \& asymptotes.

$H A: y=2$	HA: $y=\frac{1}{2}$	HA: $y=\frac{1}{2}$
VA: $x=1$	VA: $x=-\frac{1}{2}$	VA: $x=-\frac{1}{4}$
x-int: $\frac{3}{2}$	x-int: 1	x-int: $-\frac{1}{2}$
y-int: 3	y-int: -1	y-int: 1

In conclusion, a rational function of the form $f(x)=\frac{a x+b}{c x+d}$ has the following key features:
The equation for the vertical asymptote is: $x=\frac{-d}{c}$ The equation for the horizontal asymptote is: $y=\frac{a}{c}$

The x-intercept is: $\frac{-b}{a}$ The y-intercept is: $\frac{b}{d}$.

Sketching Rational Functions - Practice
Sketch all functions below. Show all steps as in the lessons.
Graphing Reminders:

1. Factor \& simplify if necessary
2. Find the equation of any asymptotes (vertical, horizontal)
3. Find x \& y intercepts
4. Use an interval table to determine where the function is positive/negative.

* If it is a reciprocal of a quadratic, find the local max/min

$$
\begin{aligned}
& \text { a) } f(x)=\frac{-6}{2 x+1} \\
& \vee A: x=\frac{-1}{2} \\
& x \rightarrow \frac{-1}{2}+y \rightarrow \\
& x \rightarrow \frac{-1}{2}-y \rightarrow
\end{aligned}
$$

x tint: none y-int: -6

$$
f(p) \underset{\frac{-1}{2}}{\leftarrow}
$$

b) $f(x)=\frac{2}{x^{2}+2 x-8}=\frac{2}{(x+4)(x-2)}$

VA: $x=-4$

$$
x \rightarrow-4^{+} \quad y \rightarrow-\infty
$$

$$
x \rightarrow-4^{-y} y+\infty \mid x \rightarrow 2^{-} \quad y>-\infty
$$

$$
\begin{aligned}
& H A: \quad y=0 \\
& x \rightarrow+\infty \quad y \rightarrow 0^{+} \\
& x \rightarrow-\infty \quad y \rightarrow 0^{+}
\end{aligned}
$$

Mint: NONE

$$
y \text {-nt: } \frac{2}{-8}=-\frac{1}{4}
$$

$$
\max : x=\frac{-4+2}{2}=-1
$$

$$
y=\frac{2}{1-2-8 p a r e-114}
$$

$$
\begin{aligned}
& \text { c) } f(x)=\frac{-1}{2 x^{2}+3 x-2}=\frac{-1}{(2 x-1)(x+2)} \\
& \text { VA: } x=\frac{1}{2} \quad\{\quad x=-2 \\
& x \rightarrow 1+y \rightarrow-\infty \quad \begin{cases}x \rightarrow-2^{*} & y \rightarrow+\infty\end{cases} \\
& x \rightarrow \frac{1}{2} \quad y \rightarrow+\infty \quad \begin{cases}x \rightarrow-2 & y \rightarrow-\infty \\
\end{cases} \\
& \text { HA: } y=0 \\
& x \rightarrow \infty \quad y \rightarrow 0^{-\infty} \\
& x \rightarrow-\infty \quad y \rightarrow 0 \\
& x \text {-int : NONE } \\
& \text { y-int: } \quad 1 / 2 \\
& \text { MIN: } x=\frac{\frac{1}{2}+(-2)}{2}=\frac{-\frac{3}{2}}{2}=\frac{-3}{4} \\
& y=0.32 \\
& \text { d) } f(x)=\frac{-3}{16 x^{2}+8 x+1}=\frac{-3}{(4 x+1)^{2}} \\
& V A: \quad x=\frac{-1}{4} \\
& x \rightarrow-\frac{1}{4}+y \rightarrow-\infty \\
& x \rightarrow-\frac{1}{4}-y \rightarrow-\infty \\
& H A: \quad y=0 \\
& x \rightarrow \infty \quad y \rightarrow 0^{-} \\
& x \rightarrow-\infty \quad y \rightarrow 0^{-} \\
& \text {x-int: NoNE } \\
& \text { y-int: -3 }
\end{aligned}
$$

$$
\text { e) } f(x)=\frac{x+6}{3 x-1}
$$

y-int: $-6 \quad x-i .0 t:-6$

f) $f(x)=\frac{2 x+1}{1-4 x}$

$$
\begin{array}{l|l}
H A: & y=-\frac{1}{2} \\
x \rightarrow-\infty & y \rightarrow-1 / 2 \\
x \rightarrow-\infty & y \rightarrow-1 / 2 \\
x \rightarrow \frac{1}{4}^{+} \quad y \rightarrow-\infty \\
x \rightarrow \frac{1}{4}-y \rightarrow+\infty \\
y \text {-int: }-1 / 2
\end{array}
$$

