Recursive Formulas

So far, we have learned to find the general term of an arithmetic or geometric sequence using...

$$t_n = a + (n-1)d$$

$$t_n = ar^{n-1}$$

These formulas are **EXPLICIT** in nature. That means, they are definite or clearly expressed. Using these formulas, we can find **ANY** term.

RECURSION – The process of describing the next term in a sequence by relating it to the previous term. In other words, the recursion formula will tell us how to get a term, **BUT ONLY IF** we know the previous one.

For example, in order to know the 50th term, you must know the 49th. In order to know the 49th, you must know the 48th, etc...

A RECURSION FORMULA HAS 2 COMPONENTS

1. An initial condition that provides a starting point.

i.e.
$$t_1 = 8$$
. (start at 8) $t_1 = -5$ (start at -5)

2. A recursive formula that tells how to derive a term using the one that came previous.

i.e.
$$t_n = t_{n-1} + 2$$
 means: get any term by adding 2 to the previous term $t_n = 3t_{n-1}$ means: get any term by multiplying previous term by 3

EXAMPLE 1 – Find the first 6 terms defined by the recursive formula : $t_1 = 5$ $t_n = t_{n-1} + 3$

Recursion Formula Practise Questions

Write the first 5 terms of the sequence defined by $t_1 = 1$, $t_n = t_{n-1} + n$, n > 1. 1)

$$t_1 = 1$$
 $t_2 = t_3 + 4$
 $t_3 = t_4 + 5$
 $t_4 = t_3 + 4$
 $t_5 = t_4 + 5$
 $t_6 = t_4 + 5$
 $t_7 = t_4 + 5$
 $t_8 = t_3 + 4$
 $t_$

Write a recursion formula for each sequence: 2)

vivile a recursion formula for each sequence:
a) 4, 11, 18, 25,...
$$t_1 = t_1$$

 $t_2 = t_1$

b)
$$32, 26, 20, 14, \dots$$
 $t_1 = 32$
 $t_1 = t_{n-1} - 6$

c) 1,-10, 100, -1000,...
$$t_1 = 1$$
 $t_n = -10t_{n-1}$

d) 32, 16, 8, 4,...
$$t_1 = 32$$

 $t_1 = \frac{1}{2}t_{n-1}$

e) 4, 5, 20, 100, 2000, ...
$$t_1 = 4$$
 $t_n = t_{n-1} \times t_{n-2}$, $n > 2$ $t_2 = 5$

A sequence is defined by the recursion formula $t_1 = 3$, $t_n = t_{n-1} + 10$, n > 1. Determine t_{100} . 3)

$$0=3$$
 { arithmetic
 $d=10$ }
 $t_n = a + (n-1) d$
 $t_{100} = 3 + 99(10)$... $t_{100} = 993$

Write the first 5 terms of the sequence defined by $t_1 = 1$, $t_2 = 2$, $t_n = t_{n-1} + t_{n-2}$, n > 2. 4)