\qquad
\qquad

Lesson 1.2 - Applications of Trigonometric Ratios

- Learning Goal: Determine the unknown sides and angles of an acute right triangle

Example 1: You are tasked at measuring the height of a certain tall building. From 40 meters away you can measure the angle to the top of the building is 70 degrees. Find the height of the building.

$$
\begin{aligned}
& \tan 10=\frac{x}{40} \\
& x=40 \tan 70 \\
& =110 \mathrm{~m}
\end{aligned}
$$

\therefore The building is 110 m tall.

An angle from horizontal looking up at an object is an angle of elevation
An angle from horizontal looking down at an object is an angle of depression

Example 2: An air traffic controller is in a control tower 92 m above the ground. He estimates his angle of elevation to a passing airplane to be 170. The airplane is approximately 4800 m from the control tower.

a) Approximately how high is the airplane above the ground?
b) Determine the approximate angle of elevation from the bottom of the control tower to the airplane.

a)

$$
\begin{aligned}
\tan 17 & =\frac{x}{4800} \\
x & =(4800)(\tan 17) \\
& =1467.5
\end{aligned}
$$

\therefore The airplane is $1467.5 \mathrm{~m}+92$ 平 above the ground. (1559.5 m)
Example 3: A roadway rises 4 m for every 10 m along the road. What is the angle of elevation of the roadway?

$$
\begin{aligned}
\tan \theta & =\frac{4}{10} \\
\theta & =\tan ^{-1}\left(\frac{4}{10}\right) \\
& =22^{\circ}
\end{aligned}
$$

\therefore The angle of

elevation is

$$
22^{\circ}
$$

\qquad
\qquad

Example 4: From the top of a 100 metre cliff, Roger looks at a boat in the lake below. The angle of depression from Roger to the boat is 30°. What is the distance of the boat from the bottom of the cliff?

Example 5:

Materials

- scientific calculator

MAP4C

Work with a partner.
An arborist uses a clinometer to determine the height of a tree during a hazard evaluation. This diagram shows the arborist's measurements.
Use $\triangle \mathrm{ABC}$.
Determine the lengths of $B C$ and $A C$.
통 Use $\triangle A C D$.
Determine the length of CD .
膚 What is the height of the tree?

For accuracy, keep more decimal places in your calculations than you need in the final answer.

Describe the strategies you used to determine the height of the tree. What angles and trigonometric ratios did you use?

- Compare your results and strategies with another pair. How are they similar? How are they different?

$$
\begin{array}{rlrl}
\sin 63 & =\frac{x}{5} \rightarrow \text { opp } & \cos 63 & =\frac{y}{5} \\
x & =(5) & y=5 \cos 63 \\
& =4.5 n & & =2.3 \mathrm{sin} 63)
\end{array}
$$

$$
\begin{aligned}
& \tan 72=\frac{z}{2.3} \\
& z=2.3 \tan 72 \\
& =7.1 \mathrm{~m}
\end{aligned}
$$

\therefore height of the

$$
\begin{aligned}
& \text { neigh e } \\
& \text { tree was } 4.5+7.1 \\
& =11.6 \mathrm{~m}
\end{aligned}
$$

