5.1 - The Coordinate Plane

A Coordinate Plane is also known as a Cartesian Plane, named after French mathematician, Rene Descartes. It is a system for graphing any point (ordered pairs) on a grid by using two numbers that form a coordinate (x, y). He came up with the idea while trying to describe the position of a spider crawling across the ceiling.

In Unit 1, we worked with an integer number line.

When a vertical number line and a horizontal number line intersect at right angles and at the point zero on each line, they form axes on a coordinate plane.

$>$ The number lines intersect at the
\qquad , which is labelled $(0,0)$.
$>$ The \qquad axis is labelled x.
$>$ The \qquad axis is labelled \boldsymbol{y}.
$>$ The axes divide the plane into four
\qquad -
$>$ The numbers on the axes are called the \qquad -

Coordinates / Ordered Pairs

Any point on the plane can be described by its coordinates. Coordinates are also known as
\qquad
\qquad and written in the form \qquad .

The \boldsymbol{x}-value of a coordinate represents the placement along the \boldsymbol{x}-axis, and it is always written \qquad .

The \boldsymbol{y}-value of a coordinate represents the placement along the \boldsymbol{y}-axis, and it is always written \qquad .

To plot a point (x, y) :

\checkmark Always start at the origin $(0,0)$
\checkmark Read along the x-axis to identify the x-coordiante (the first coordinate)
A positive x-value means move to the right.
A negative x-value means move to the left.
\checkmark Read along the y-axis to identify the y-coordiante (the first coordinate)
A positive y-value means move to the upwards.
A negative y-value means move to the downwards.

Ex. 1: Graph the following points on the given grid. State which quadrant each point is in.
$A(3,4)$
$B(-1,4)$
C $(4,-2)$
D $(-5,-4)$
$E(2,5)$
$F(-3,-1)$
$G(-3,7)$
$H(0,0)$
I $(-2,0)$
$J(0,-4)$

Ex. 2: Using the coordinate plane given, write the ordered pairs for each point.

$$
\begin{array}{ll}
G(,) & H(,) \\
J(,) & K(,) \\
L(,) & M(,)
\end{array}
$$

The Coordinate Plane - Practice

Use the following grid to code and decode messages.

1. Write the coordinate positions for the letters in these words:

DRIVE \qquad
PARTY \qquad
GAME \qquad
2. Decode this message, using the coordinate plane on the left.
$(2,1)(1,2)(-2,-3)(-3,-1)(0,-2)(-3,2)(-2,3)(3,0)$
$(-1,2)(0,2)(-3,2)(-3,-1)(-1,2)(0,2)$
3. On the grid below, plot and label each point.

$$
\begin{array}{llll}
\mathrm{N}(2,3) & \mathrm{P}(2,-3) & \mathrm{Q}(1,-3) & (-1,-2)(0,1)(2,1)(-3,-2) \\
\mathrm{R}(0,3) & \mathrm{S}(3,0) & \mathrm{T}(-2,0) & \\
\mathrm{U}(0,-1) & \mathrm{V}(-1,2) & \mathrm{W}(-3,1) &
\end{array}
$$

$$
X(-1,3) \quad Y(-3,-1) \quad Z(-3,-2)
$$

4. For each set of points, plot and join the points in order to form a closed figure.
(a) $A(2,1) B(5,1) C(5,3) D(2,3)$
(b) $E(-2,3) F(-5,3) G(-5,1)$
(c) $H(-3,1) \mid(-1,1) J(-1,-1) K(-3,-1)$
(d) $L(2,1) M(5,1) N(4,-3) P(1,-3)$

5. Match the words in the box with the most appropriate expression below.

coordinates y-coordinate x-coordinate	origin horizontal axis vertical axis	scale ordered pair coordinate plane

(a) A grid with two perpendicular lines \qquad
(b) tells how far the point is along the x-axis \qquad
(c) the numbers on the axes \qquad
(d) tells how far the point is along the y-axis \qquad
(e) also known as the x-axis \qquad
(f) the point where the axes cross \qquad
(g) a point in a plane represented by an ordered pair of numbers \qquad
(h) two numbers, written in order within a set of brackets and separated by a comma
(i) also known as the y-axis \qquad
6. Exactly where in coordinate plane are the following ordered pairs located? (e.g. Quadrant 1, 2, 3, or 4; origin; \boldsymbol{x} - axis; \boldsymbol{y} - axis)

1) $(27,-89)$
2) $(0,-19)$
3) $(14,34)$
4) $(0,0)$
5) $(-66,-23)$
6) $(-1,103)$
7) $(126,-12)$
8) $(-18,0)$
9) $(352,-353)$

5.1 What Happened After a Burglar Broke Into a Tuba Factory?

Each ordered pair at the bottom of the page represents a:point:on the coordinates

 below. Above each ordered pair, write the letfer that appears at that'point.
$\overline{(5,4)} \overline{(10,2)} \overline{(-3,7)} \overline{(-10,5)} \overline{(-2,-5)(-3,-10)(3 ;-2)} \overline{(8,-4)(6,0)} \overline{(0,5)} \overline{(-4,0)(0,-11)} \overline{(2,2)}$
$\overline{(-5,-8)} \overline{(-7,1)} \overline{(7,-9)} \overline{(-9,0)} \overline{(-7,-2)(4,-8)} \overline{(6,7)} \overline{(-5,9)} \overline{(0,-7)} \overline{(-8,-6)} \overline{(0,10)} \frac{.}{(0,0)} \overline{(9,5)}$
i-
$\overline{(9,0)} \overline{(5,-6)} \overline{(-9,8)(-11,-11)(4,1)} \overline{(0,8)} \overline{(-4,3)} \overline{(9,-7)} \overline{(-2,0)(8.5,11)} \overline{(0,-3.5)} \overline{(1.5,0)}$

5.2: Slope
 Slope

Name: \qquad Per: $\quad 5$
Example 1
These diaghans teprèsent tüo statrcases:

We move 2 blocks fight. The. \qquad is 2. We move unp 2 blocks.: The is.2.

Suppose we lay a board on each staircase.

We move 1 block right and 1 block up:
The whan \qquad and the tise is
\qquad \therefore

What do you notice about the steepness of each board

Example 2

© On the following grid draw atatrase where each step has a rise of 6 and a run of 2 .
Mathout changing the steepness, draw addtional blocks' so that, each horizontal step is onty I block.
a On the new staircase; ás we move 1 block ryhty we moye \qquad blocks up: This number is the slope.
What iș the slope of the staricase? \qquad
风e Drawe a board that will lie on your staitcase,
a Explain why moving 2 units right and 6 wnitsup. has the same steepiess as moving 1 unit right and 3 units üp.

18: When the rise is 6 and the is 2 , what is the slope?

							.	,	1	-
					-				\cdots	
	-									
\because										
						-				
					:					

When calculating slope on a grid you need to be careful of positive and negative values.

* On grid we always count the ruin from left to right (just like we read id)

So the ruin is always positive!!
Example 6
Determine the slope of each line on the following grid.

 \qquad
Slope $=$

Line 2 drops from left to night, so it ias a \qquad
Slope =

Wace Besant rise or fall from left to right so its rise is \qquad . Slope: $=$

Line 4 has:árise of \qquad arian of \qquad Theitefore the slope is \qquad $-$

Conclusions

Any line rising to the tight has a \qquad slope.
Any fie falling to the rigitit has a \qquad slope:
Any horizontal line hays a slope of \qquad . Any vertical line has: an \qquad slope:

Slope is calculated using the formula

```
Slope =
```

\qquad
Slope measures how \qquad aline is
A higher value for slope represents a \qquad tine

A lower value for slope represents a \qquad

What Might You Have If You Don't Feel Well ?
Determine the slope of this line. Find your answer at the bottom For each exercise, draw a line through the two given points. of the page and write the letter of that exercise above it.

				y	1			.	
			\cdots						
				\cdot					
				\cdot					
				0					x

			1^{*}			
				0		

\bigcirc
ロ\|
\checkmark
Nim
$\stackrel{0}{1}$
N1m
$\stackrel{\sim}{N}$
τ
OIN
TIN
-im

\qquad

Grid Lines: The vertical and \qquad lines which form the grid on graph paper.

Grid Point: Any point of \qquad of two \qquad
\qquad on graph paper.

Slope: \quad A number which represents the \qquad or \qquad of a line.

AMOUNT OF SLOPE:

Moderate Slope: \qquad makes an angle of \qquad with the horizontal.

Gentle Slope: \qquad makes an angle between \qquad and \qquad with the horizontal.

Steep Slope: \qquad makes an angle between \qquad and \qquad with the horizontal.

Zero slope: \qquad makes an angle of \qquad with the horizontal.

DIRECTION OF SLOPE: Lines many be vertical, horizontal, uphill or downhill in direction.
Uphill: Ascending, \qquad or \qquad to the right.

Downhill: \qquad , \qquad or \qquad to the right.

Steps For Finding A Numerical Value For Slope:

1. Find two grid points on the line and mark them with dots.
2. Start at the left grid point.
3. Use a ruler to draw a horizontal line to the right from this point until you are vertically above or below the second grid point. This horizontal line is the run.
4. Now draw a vertical line from the right end of the run either up or down to connect to the second grid point. This vertical line is the rise.
5. Count the graph squares to determine the length of the run and the rise.
6. The run is always positive.
7. The rise is positive if it is going upwards from the run, or is negative if the rise is going downwards from the run.
8. $S L O P E=\frac{\text { rise }}{\text { run }}$
9. Reduce the answer for slope to a fraction in lowest terms - avoid decimals or mixed numbers.

SUMMARY:

Uphill Slope: \qquad .corresponds to slope values which are \qquad .

Downhill Slope: \qquad .corresponds to slope values which are \qquad .

Moderate Slope: \qquad .corresponds to a slope value of \qquad or \qquad .

Gentle Slope: \qquad .corresponds to slope values which are \qquad than \qquad .

Steep Slope: \qquad .corresponds to slope values which are \qquad than \qquad .

Zero slope: \qquad corresponds to a slope value of \qquad .

Graph \# \qquad has the steepest slope of all because its slope value is \qquad .

Graph \# \qquad has the gentlest slope of all because its slope value is \qquad .

10.	amount of slope:	direction of slope:	slope $=$

11.

Mathematics 9

Point-Slope Graphs

Date:

(1) For each of the slopes given in the table below:
a) Complete the rows for amount of slope and direction of slope in words.
b) Give the rise and the run in the spaces provided.

Graph \#:	1	2	3	4	5	6
Slope	$\frac{4}{5}$	$\frac{5}{2}$	$-\frac{5}{3}$	$-\frac{1}{3}$	4	-3
Direction Of Slope						
Amount Of Slope						
Run (always positive)						
Rise (positive ornegative)						

(2) On the 6 graphs below, plot lines which pass through the origin that have the given slopes.

Steps: i) Place your pencil at the requested starting point.
ii) Use a ruler draw the run first. Since this is always positive, it will always be drawn to the right from the starting point.
iii) Now draw the rise from the end of the run. ($U p$ if positive, down if negative.)
iv) Draw a line through the ends of the rise and run and extend the line to the edges of the grid.

 1. slope $=\frac{4}{5}$; start at $(0,0)$	 2. slope $=\frac{5}{2}$; start at $(0,0)$	 3. slope $=-\frac{5}{3}$; start at $(0,0)$
 4. slope $=-\frac{1}{3}$; start at $(0,0)$	 5. slope $=4$; start at $(0,0)$	 6. slope $=-3$; start at $(0,0)$

For the remaining graphs notice that the requested start point for the run is no longer at the origin.

 7. slope $=\frac{2}{3}$; start at $(1,1)$	 8. slope $=-\frac{11}{4} ;$ start at $(2,6)$	 9. slope $=-\frac{1}{5}$; start at $(-5,5)$
 10. slope $=\frac{5}{4} ;$ start at $(-4,0)$	$\text { 11. slope }=-6 \text {; start at }(0,5)$	 12. slope $=5$; start at $(0,-3)$
 13. slope $=\frac{3}{5}$; start at $(-4,-7)$	 14. slope $=-\frac{1}{2} ;$ start at $(-7,1)$	 15. slope $=\frac{5}{7}$; start at $(-1,-3)$

To Check Answers:

If drawn correctly, your line will also go through the point indicated below. (A near miss probably means that you just need to be more careful when lining up your ruler to draw the line-try it!)

1. $(-5,-4)$
2. $(-2,-5)$
3. $(-3,5)$
4. $(-6,2)$
5. $(2,8)$
6. $(-1,3)$
7. $(7,5)$
8. $(6,-5)$
9. $(5,3)$
10. $(-8,-5)$
11. $(2,-7)$
12. $(-1,-8)$
13. $(6,-1)$
14. $(1,-3)$
15. $(-8,-8)$
