4.1 Review of Exponent Laws

Goal: to review the exponent laws

In multiplication, the terms that are multiplied together are called _______________________________ A repeated multiplication of equal factors can be expressed as a power

$$3 \times 3 \times 3 \times 3 =$$

→ 34 is the power

→ 3 is the base

EXAMPLES Write each in expanded form and then evaluate to standard form

$$6^3 = 6 \times 6 \times 6$$

$$3^2 \times 2^3 = 3 \times 3 \times 2 \times 2 \times 2 \times 2 \qquad 6^2 + 3^2 = 6 \times 6 + 3 \times 3$$

$$6^2 + 3^2 = 6 \times 6 + 3 \times 3$$

$$= 36 + 9$$

=45

POWER OF A NEGATIVE NUMBER

Exponents affect ONLY the number it touches in a power. Notice the difference?

$$-3^2 = -9$$

$$(-3)^2 = (-3)(-3)$$

EXPONENT LAWS

Add/Subtract Powers -> You can only add/subtract the _______ of the like powers

$$a^m + a^m = 2a^m$$

$$a^m + 3a^m =$$

Multiply Powers → To multiply powers with the SAME base ______ the exponents

$$a^m \times a^n = \alpha^{m+n}$$

$$x^2 \times x^3 = x^2 + 3 = x^5$$

Divide Powers → To divide powers with the SAME base _____ SOBTRAG ___ the exponents

$$a^m \div a^n = \alpha^{m-n}$$

$$x^7 \div x^4 = x^{7-4} = x^3$$

Power of a Power -> To simplify a power of a power MULTIPLY the exponents

$$(a^m)^n = a^{mn}$$

$$(x^4)^3 = \infty \xrightarrow{4 \times 3} = \infty \stackrel{(2)}{=} \infty$$

Power of a Product or Quotient -> Apply the __exponent__ to each Variable in the product or or term

$$(ab)^m = Q^m b^m$$

$$(xy)^3 = \chi^3 \mathcal{Y}^3$$

$$\left(\frac{a}{b}\right)^m = \frac{Q^m}{b^m}$$

$$\left(\frac{x}{y}\right)^2 = \frac{x^2}{4^2}$$

Exponents Practice

1. Simplify each of the following in exponent form and evaluate to standard form.

a)
$$4 \times 4 \times 4 \times 4 \times 4 \times 4$$

c)
$$(5\times5\times5)+(6\times6)$$

$$=(-3)^3$$

$$= 125+36$$

= 161

d)
$$(-9 \times -9) - (7 \times 7 \times 7)$$

e)
$$(-2 \times -2 \times -2 \times -2) \times (5 \times 5)$$

e)
$$(-2 \times -2 \times -2 \times -2) \times (5 \times 5)$$
 f) $(\frac{3}{5}) \times (\frac{3}{5})$ leave as a fraction

$$=(-9)^2 + 7^3$$

$$=(-2)^{4} \times 5^{2}$$

= 16×25

$$=\left(\frac{3}{5}\right)^{2} = \frac{9}{25}$$

$$= 81 - 343$$
 $= -262$

2. Write each of the following in expanded form and evaluate to standard form.

d)
$$(-4)^2 + 3^2$$

$$d) \quad v^6 \times v^3 \div v^7$$

$$=\frac{y^9}{97}=y^2$$

$$\mathbf{g}$$
) $(3x^2)^3$

$$=3^3 \times 6 = 27 \times 6$$

b)
$$(-5)^3$$

e)
$$2^5 - 4^2$$

e)
$$2^5 - 4^2$$

= $2 \times 2 \times 2 \times 2 \times 2 - 4 \times 4$
= $(-2)^4 \div 8$

c)
$$\left(\frac{-3}{3}\right)$$

c)
$$\left(\frac{-2}{3}\right)^3 = \left(\frac{-2}{3}\right)\left(\frac{-2}{3}\right)\left(\frac{-2}{3}\right)$$

$$= \frac{-8}{37}$$

f)
$$(-2)^4 \div 8$$

$$=\frac{16}{8}=2$$

b) $(2xy)^2 = z^2 x^2 y^2$ c) $(2xy)(xy) = 7x^2 y^2$ a) $x^4 \times x^2$

e)
$$x^3(x^2) - x^2(x)$$

$$= \alpha^2 \times 3$$

$$h) \ \frac{x^8}{x^3} = x^5$$

f)
$$(-2y^3)^3$$

$$=(-2)^{3}y^{9}=-8y^{9}$$

$$h) \frac{x^8}{x^3} = x^5$$

i)
$$\left(\frac{x^5}{x^2}\right)^2 = \frac{10}{24}$$

$$i) \quad \left(\frac{x^2}{y^2}\right) + 2\left(\frac{x}{y}\right)^2$$

 $= \frac{x^2}{4^2} + 2x^2 = 3x^2$

k)
$$\left(\frac{m^5 n^2}{m^3}\right)^2 = \left(m^2 n^2\right)^2$$
 1) $\frac{-6a^7 b^4}{3a^2 b^2}$

$$1) \quad \frac{-6a'b'}{3a^2b^2}$$

$$= m^4 h^4 = -2ab^2$$

Why Was the Engineer Driving the Train Backwards?

Find the missing factor in each exercise below. Find your answer in the set of answers to the right of that exercise. Write the letter next to your answer in the box containing the number of that exercise.

1
$$x^8 = (x^5)(\underline{^5})$$
 H
2 $24x^5 = (6x^2)(\underline{^3})$ O

$$(T) 4x^5$$

(2)
$$24x^5 = (6x^2)(4x^3)$$

$$(A) -5x^5$$

$$\bigcirc 4x^3$$

$$(3) -12x^4 = (3x^3)(-4x)$$

$$(R) -4x^8$$

3
$$-12x^4 = (3x^3)(-4x)$$

4 $20x^7 = (-4x^2)(-5x^5)$

$$\bigcirc$$
 -5 \mathbf{x}^3

$$\overline{(1)}$$
 $-4x$

(5)
$$a^5b^8 = (a^2b^3)(\alpha^3b^5) \in$$

$$(P) a^2b^2$$

$$\bigcirc$$
 a³b⁵

6
$$4a^2b^6 = (2ab^2)(2ab^4)$$

(A)
$$-12a^2b^4$$

$$7 - 15a^7b^4 = (-3a^4b)(5a^3b^3) \text{ K}$$

(L)
$$2ab^7$$

8)
$$72a^{10}b^3 = (-6a^5b^2)(\underline{12.05b})$$

$$\bigcirc 2ab^4$$

$$(\mathsf{K}) 5\mathbf{a}^5\mathbf{b}^3$$

$$9 \mathbf{x}^5 \mathbf{y}^3 = (\mathbf{x}^2)(\underline{\chi^3})$$

$$\sqrt{}$$
 $-3y^4$

$$\bigcirc 3x^2y^6$$

$$(10) -6x^2y^7 = (-2y)(3x^2y^6) \bigcirc$$

$$(L)$$
 $-2x^7$

$$(T)$$
 3 $\mathbf{x}^2\mathbf{y}^3$

$$\begin{array}{ll}
(10) & -6x^2y^7 = (-2y)(3x^2y^6) \\
(11) & 14x^9y^6 = (-7x^2y^6)(-2x^7)
\end{array}$$

$$\bigcirc$$
 $-2x^6y$

$$\bigcirc$$
 $\mathbf{x}^3\mathbf{y}^3$

(12)
$$27x^4y^3 = (9x^4y)(3y^2) \in$$

$$\bigcirc$$
 $\mathbf{x}^2\mathbf{y}^4$

(13)
$$-3u^4v^2 = (u^2v)(-3u^2)$$

$$(R)$$
 $-2uv^6$

(R)
$$-3u^2v^4$$

(14)
$$32uv^5 = (-16v^2)(\underline{-2w^3})$$
 D

$$M$$
 11 v^2

$$\bigcirc$$
 -3 u^2v^{11}

(15)
$$121u^2v^3 = (11u^2v)(1)\sqrt{2}$$

$$\bigcirc$$
 3 u^2v^6

$$(16) -6u^3v^{12} = (2uv)(3u^2v)$$

$$(T) -3u^2v$$

$$(D)$$
 $-2uv^3$

4.2 Zero and Negative Exponents

Goal: to determine the meaning of zero and negative exponents

Complete the following chart. Evaluate each to standard form. Leave as whole numbers or fractions.

Expression to be Simplified	Write in Expanded Form	Using Exponent Laws
$\frac{2^3}{2^1}$	$=\frac{2\times2\times2}{2}$ $=4$	$2^{3-1} = 2^2 = 4$
$\frac{2^3}{2^2}$	$=\frac{2\times2\times2}{2\times2}$	$2^{3-2} = 2^{1} = 2$
$\frac{2^3}{2^3}$	$=\frac{2\times2\times2}{2\times2\times2}=1$	3-3 2 = 2°=1
$\frac{2^3}{2^4}$	$=\frac{2\times2\times2}{2\times2\times2}=\frac{1}{2}$	23-4 2-1 = 1
$\frac{2^3}{2^5}$	$=\frac{2x2x^2}{2x2x2x2x2}=\frac{1}{4}$	$2 = 2 = \frac{1}{4}$

HOW is the exponent law expression RELATED TO the expanded form expression? $Q = \frac{1}{ax}$ Since $2 = \frac{1}{2}$ and $2 = \frac{1}{2}$

$$Q^{-x} = \frac{1}{Qx}$$

and
$$2^{-2} = \frac{1}{2^2}$$

What do you notice about the result of an expression with an exponent of zero?

What do you notice about the result of an expression with an exponent that is negative?

If exponent is negative, the evaluated answer is 1

THE ZERO EXPONENT

Any number (or expression) divided by itself is equal to ____ Use exponent laws to evaluate each of the following:

a)
$$\frac{2^3}{2^3} = 2^3 = 1$$

$$\frac{2^3}{2^3} = 2^3 = 2^0 = 1 \quad \frac{3^2}{3^2} = 3^2 = 1 \quad \frac{3^2}{x^4} = 1$$

c)
$$\frac{x^4}{x^4} =$$

Therefore, for zero exponents: Any BASE raised to an exponent of zero is equal to _

$$a^0 = 1$$

EXAMPLES - Evaluate.

$$/^{0} =$$

$$x^{0} =$$

$$x^0 = \begin{cases} 3 \times 2^0 = 3 \end{cases} \qquad x^0 y = \begin{cases} 3 \end{cases}$$

$$x^0y = y$$

THE NEGATIVE EXPONENT

same <u>Positive</u> exponent.

$$a^{-m} = \frac{1}{a^m} \quad and \quad \frac{1}{a^{-m}} = a^m$$

$$\frac{1}{a^{-m}} = a^{m}$$

$$\frac{2^{3}}{2^{4}} = 2^{-1} = \frac{1}{2!}$$

exponent laws to simplify each of the following. Then evaluate
$$\frac{2^3}{2^4} = 2^{-1} = \frac{1}{3^5} = \frac{1}{3^5} = \frac{1}{3^5} = \frac{1}{3^5}$$

$$\frac{4}{4^{7}} = 4$$

$$= \frac{1}{4^{3}} = \frac{1}{64}$$

EXAMPLES

Simplify and evaluate.

$$\int_{0}^{2^{-1}} = \int_{0}^{2^{-1}}$$

$$(-8)^{-2} = 1$$

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

$$(-8)^{-2} = \frac{1}{64} \qquad 2^{-3} = \frac{1}{8} \qquad (-3)^{-3} = \frac{1}{(-3)^3} = \frac{1}{27}$$

EXERCISE: Complete the following table.

Exponent Form	3 ²	5-1	10°	3 ⁻³	3-1	2 ⁻ⁿ	5-m	(-1225) ⁰
Simplified Form	9	$\frac{1}{5}$	1	<u>1</u> 27	$\frac{1}{3}$	1/27	$\frac{1}{5^m}$	1

SIMPLIFYING EXPRESSIONS

The rules for positive exponents also work for zero and negative exponents. Continue to follow the rules for order of operations (BEDMAS) when simplifying & evaluating.

EXAMPLES

Simplify and evaluate each of the following:

$$3^{3} \times 3^{-5} = 3^{-2}$$

$$= 1$$

$$= 1$$

of the following:
$$\frac{(-2)^2}{(-2)^{-3}} = (-2)^2$$
= (-2)

$$\left(\frac{3^2}{3^4}\right)^2 = \frac{3^4}{3^8}$$

$$= 3^{-4} = \frac{1}{3^4} = \frac{1}{8}$$

Zero & Negative Exponents Practice

1. Complete the following table. Express your answers as whole numbers or fractions.

Exponent Form	5 ²	5 ⁻²	10 ³	10 ⁻³	x^4	x^{-4}	2 ^x	2 ^{-x}
Simplified Form	25	$\frac{1}{5^2} \frac{1}{25}$	1000	1000	X	<u> </u>	2*	1 Z

2. Evaluate. Express your answers as whole numbers or fractions.

a)
$$12^0 = 1$$

b)
$$8^{-1} = 1$$

c)
$$(-2)^{-4} = 1$$

$$\frac{1}{2}$$
 d) $(-12)^0 = \frac{1}{2}$

e)
$$\left(\frac{1}{4}\right)^{-2} = \left(\frac{4}{1}\right)^{2}$$

f)
$$\left(\frac{1}{3}\right)^{-3} = \left(\frac{3}{1}\right)^{3}$$

g)
$$(-3)^{-3}$$

$$= \frac{1}{(-3)^3} = \frac{1}{75}$$

e)
$$\left(\frac{1}{4}\right)^{-2} = \left(\frac{4}{1}\right)^{2}$$
 f) $\left(\frac{1}{3}\right)^{-3} = \left(\frac{3}{3}\right)^{3}$ g) $(-3)^{-3}$ h) $\frac{1}{2^{-1}} = 2 = 2$

$$= \frac{16}{1} = 16$$

$$= 27$$

$$= \frac{1}{(-3)^{3}} = \frac{1}{27}$$

3. Evaluate. Rewrite negative exponents and evaluate as fractions.

a)
$$-(16)^0 = -1$$

a)
$$-(16)^0 = -1$$
 b) $4^{-4} = 1 = 1$ c) $(-3)^3 = -27$ d) $(-11)^1 = -11$

c)
$$(-3)^3 = -27$$

d)
$$(-11)^1 = -1$$

e)
$$-(-6)^3$$

g)
$$5^{-2} = \frac{1}{5^2} \frac{1}{25}$$
 h) $3^0 = 1$

$$= -(-216) = \frac{1}{2^5} = \frac{1}{32}$$

$$= 216 = 2^5 = 32$$

$$=\frac{1}{2^5}=\frac{1}{32}$$

4. Simplify each as a single power, then evaluate. Express your answers as fractions. The first two have been done for you.

d)
$$8^3 \times 8 = 8^{3+1}$$

= 8^4
= 4096

$$= \frac{1}{(2^4)^3} = \frac{1}{2^{4\times 3}}$$

$$= \frac{1}{2^{12}}$$

$$= 2^{-12}$$

$$= \frac{1}{4096}$$

f)
$$(10^{-2})^2 = 10^{-4} = \frac{1}{100000}$$

9)
$$6^{2} \div 6^{5}$$
 h) $\left(\frac{1}{2^{4}}\right)\left(\frac{1}{2^{2}}\right)$

$$= 6$$

$$= 1$$

$$= 6$$

$$= \frac{1}{2^{4}} = \frac{1}{2^{6}} = \frac{1}{2^{6$$

h)
$$\left(\frac{1}{2^4}\right)\left(\frac{1}{2^2}\right)$$

$$= \frac{1}{2^{4+2}} = \frac{1}{26} = \frac{1}{64}$$

i)
$$\left(\frac{1}{5}\right)^{-9} \times \left(\frac{1}{5}\right)^7 = \left(\frac{1}{5}\right)^{-2}$$

$$= \left(\frac{5}{1}\right)^2 = 25$$