4.1 Review of Exponent Laws

Goal: to review the exponent laws
In multiplication, the terms that are multiplied together are called \qquad
A repeated multiplication of equal factors can be expressed as a

EXAMPLES Write each in expanded form and then evaluate to standard form

$$
6^{3}=6 \times 6 \times 6
$$

$$
\begin{aligned}
3^{2} \times 2^{3}=3 \times 3 \times 2 \times 2 \times 2 \quad 6^{2}+3^{2} & =6 \times 6+3 \times 3 \\
& =72 \\
& =36+9 \\
& =45
\end{aligned}
$$

POWER OF A NEGATIVE NUMBER
Exponents affect ONLY the number it touches in a power. Notice the difference?

$$
\begin{array}{lr}
-3^{2}=-9 & (-3)^{2}= \\
\rightarrow-3 \times 3 & =9
\end{array}
$$

EXPONENT LAWS
, Add/Subtract Powers \rightarrow You can only add/subtract the \qquad Coefficients of the like powers

$$
a^{m}+a^{m}=2 a^{m}
$$

$$
a^{m}+3 a^{m}=
$$

- Multiply Powers \rightarrow To multiply powers with the SAME base \qquad $A D D$ the exponents

$$
a^{m} \times a^{n}=a^{m+n}
$$

$$
x^{2} \times x^{3}=x^{2+3}=x^{5}
$$

- Divide Powers \rightarrow To divide powers with the SAME base SUBTPACT the exponents

$$
a^{m} \div a^{n}=a^{m-n} \quad x^{7} \div x^{4}=x^{7-4}=x^{3}
$$

- Power of a Power \rightarrow To simplify a power of a power MULOPPLY the exponents

$$
\left(a^{m}\right)^{n}=a^{m n} \quad\left(x^{4}\right)^{3}=x^{4 \times 3}=x^{12}
$$

- Power of a Product or Quotient \rightarrow Apply the \qquad to each quotient. exponent Variable or term

$$
\begin{array}{ll}
(a b)^{m}=a^{m} b^{m} & (x y)^{3}=x^{3} y^{3} \\
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} & \left(\frac{x}{y}\right)^{2}=\frac{x^{2}}{y^{2}}
\end{array}
$$

Exponents Practice

1. Simplify each of the following in exponent form and evaluate to standard form.
a) $4 \times 4 \times 4 \times 4 \times 4 \times 4$
b) $-3 \times-3 \times-3$
c) $(5 \times 5 \times 5)+(6 \times 6)$
$=4^{6}$
$=(-3)^{3}$
$=5^{3}+6^{2}$

$$
=4096
$$

$$
=-27
$$

d) $(-9 \times-9)-(7 \times 7 \times 7)$
e) $(-2 \times-2 \times-2 \times-2) \times(5 \times 5)$

$$
\begin{aligned}
& =(-2)^{4} \times 5^{2} \\
& =16 \times 25 \\
& =400
\end{aligned}
$$

f) $\left(\frac{3}{5}\right) \times\left(\frac{3}{5}\right)$ leave as a fraction

$$
=\left(\frac{3}{5}\right)^{2}=\frac{9}{25}
$$

$=-262$
2. Write each of the following in expanded form and evaluate to standard form.
a) 3^{4}
b) $(-5)^{3}$
c) $\left(\frac{-2}{3}\right)^{3}=\left(\frac{-2}{3}\right)\left(\frac{-2}{3}\right)\left(\frac{-2}{3}\right)$

$$
\begin{aligned}
& =3 \times 3 \times 3 \times 3 \\
& =81
\end{aligned}
$$

$=(-5)(-5)(-5)$

$$
=-125
$$

$$
=\frac{-8}{27}
$$

d) $(-4)^{2}+3^{2}$
e) $2^{5}-4^{2}$
f) $(-2)^{4} \div 8$

$$
\begin{aligned}
& =(-4)(-4)+3 \times 3 \\
& =16+9 \\
& =25
\end{aligned}
$$

$$
=2 \times 2 \times 2 \times 2 \times 2-4 \times 4
$$

$$
=32-16
$$

$$
=16
$$

b) $(2 x y)^{2}=2^{2} x^{2} y^{2}$
c) $(2 x y)(x y)=2 x^{2} y^{2}$
$=4 x^{2} y^{2}$
e) $x^{3}\left(x^{2}\right)-x^{2}(x)$
f) $\left(-2 y^{3}\right)^{3}$
$=x^{3}-x^{3}$

$$
\begin{aligned}
& \left(-2 y^{3}\right)^{3} \\
& =(-2)^{3} y^{9}=-8 y^{9}
\end{aligned}
$$

h) $\frac{x^{8}}{x^{3}}=x^{5}$
i) $\left(\frac{x^{5}}{x^{2}}\right)^{2}=\frac{x^{10}}{x^{4}}$
k) $\left(\frac{m^{5} n^{2}}{m^{3}}\right)^{2}=\left(m^{2} n^{2}\right)^{2}$
I) $\frac{-6 a^{7} b^{4}}{3 a^{2} b^{2}}$
$=m^{4} n^{4}=-2 a^{5} b^{2}$

Why Was the Engineer

 Driving the Train Backwards?Find the missing factor in each exercise below. Find your answer in the set of answers to the right of that exercise. Write the letter next to your answer in the box containing the number of that exercise.
(1) $\mathrm{x}^{8}=\left(\mathrm{x}^{5}\right)\left(x^{3}\right)$
(T) $4 x^{5}$
(N) x^{6}
(2) $24 x^{5}=\left(6 x^{2}\right)\left(4 x^{3}\right) 0$
(A) $-5 x^{5}$
(O) $4 x^{3}$
(3) $-12 x^{4}=\left(3 x^{3}\right)(-4 x) I$
(H) x^{3}
(B) $-4 x^{8}$
(4) $20 x^{7}=\left(-4 x^{2}\right)\left(-5 x^{5}\right) A$
(E) $-5 x^{3}$
(I) $-4 x$
(5) $a^{5} b^{8}=\left(a^{2} b^{3}\right)\left(a^{3} b^{5}\right) E$
(P) $a^{2} b^{2}$
(E) $a^{3} b^{5}$
(6) $4 a^{2} b^{6}=\left(2 a b^{2}\right)\left(2 a b^{4}\right) 0$
(V) $5 a^{3} b^{3}$
(A) $-12 a^{2} b^{4}$
(7) $-15 a^{7} b^{4}=\left(-3 a^{4} b\right)\left(5 a^{3} b^{3}\right) K$
(L) $2 a b^{7}$
(H) $-12 a^{5} b$
(8) $72 a^{10} b^{3}=\left(-6 a^{5} b^{2}\right)\left(-12 a^{5} b\right) ~ H$
(O) $2 a b^{4}$
(K) $5 a^{5} b^{3}$

(9) $x^{5} y^{3}=\left(x^{2}\right)\left(x^{3} y^{3}\right) \quad A$	(V) $-3 y^{4}$	(O) $3 x^{2} y^{6}$
(10) $-6 x^{2} y^{7}=(-2 y)\left(3 x^{2} y^{6}\right)$		
(11) $14 x^{9} y^{6}=\left(-7 x^{2} y^{6}\right)\left(-2 x^{7}\right) L$	(L) $-2 x^{7}$	(T) $3 x^{2} y^{3}$
(12) $27 x^{4} y^{3}=\left(9 x^{4} y\right)\left(3 y^{2}\right) E$	(S) $-2 x^{6} y$	(A) $x^{3} y^{3}$

(13) $-3 u^{4} v^{2}=\left(u^{2} v\right)\left(-3 u^{2} v\right)$		
(14) $32 u v^{5}=\left(-16 v^{2}\right)\left(-2 u v^{3}\right)$		
(15) $121 u^{2} v^{3}=\left(11 u^{2} v\right)\left(11 v^{2}\right)$	(R) $-2 u v^{6}$	(M) $11 v^{2}$
(16) $-6 u^{3} v^{12}=(2 u v)\left(-3 u^{2} v^{11}\right.$	(B) $-3 u^{2} v^{4}$	
	(T) $11 v^{3}$	(C) $-3 u^{2} v^{11}$

8	12	1	9	14	4	11	2	16	6	15	10	13	3	7	5
H	E	H	A	D	A	L	O	M	O	C	O	T	I	K	E

4.2 Zero and Negative Exponents

Goal: to determine the meaning of zero and negative exponents
Complete the following chart. Evaluate each to standard form. Leave as whole numbers or fractions.

HOW is the exponent law expression RELATED TO the expanded form expression?

$$
a^{-x}=\frac{1}{a^{x}} \text { Since } 2^{-1}=\frac{1}{2^{1}} \text { and } 2^{-2}=\frac{1}{2^{2}}
$$

What do you notice about the result of an expression with an exponent of zero?

$$
\text { equals } 1
$$

What do you notice about the result of an expression with an exponent that is negative?
If exponent is negative, the evaluated answer is
THE ZERO EXPONENT
Any number (or expression) divided by itself is equal to \qquad Use exponent laws to evaluate each of the following:
a) $\frac{2^{3}}{2^{3}}=2^{3^{-3}}=2^{0}=1$
b) $\frac{3^{2}}{3^{2}}=3^{2-2}=3^{0}=1$
c)

Therefore, for zero exponents: Any BASE raised to an exponent of zero is equal to \qquad 1

$$
a^{0}=1
$$

EXAMPLES - Evaluate.

$$
1^{0}=1 \quad x^{0}=1 \quad 3 \times 2^{0}=3 \quad x^{0} y=y
$$

THE NEGATIVE EXPONENT
Any BASE raised to a NEGATIVE exponent is equal to the \qquad reciprocal of the base raised to the same \qquad exponent.

$$
a^{-m}=\frac{1}{a^{m}} \quad \text { and } \quad \frac{1}{a^{-m}}=a^{m}
$$

Use exponent laws to simplify each of the following. Then evaluate to standard form. - 3
a)

$$
\frac{2^{3}}{2^{4}}=2^{-1}=\frac{1}{2^{1}}
$$

b)

$$
\begin{aligned}
\frac{3^{2}}{3^{5}} & =3^{-3}=\frac{1}{3^{3}} \\
& =\frac{1}{27}
\end{aligned}
$$

c) $\frac{4^{5}}{4^{7}}$

$$
\begin{aligned}
& =4 \\
& =\frac{1}{4^{3}}=\frac{1}{64}
\end{aligned}
$$

EXAMPLES
Simplify and evaluate.

$$
7^{-1}=\frac{1}{7} \quad(-8)^{-2}=\frac{1}{64} \quad 2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \quad(-3)^{-3}=\frac{1}{(-3)^{3}}=\frac{1}{-27}
$$

EXERCISE: Complete the following table.

Exponent Form	3^{2}	5^{-1}	10^{0}	3^{-3}	3^{-1}	2^{-n}	5^{-m}	$(-1225)^{0}$
Simplified Form	9	$\frac{1}{5}$	1	$\frac{1}{27}$	$\frac{1}{3}$	$\frac{1}{2^{n}}$	$\frac{1}{5^{m}}$	1

SIMPLIFYING EXPRESSIONS
The rules for positive exponents also work for zero and negative exponents. Continue to follow the rules for order of operations (BEDMAS) when simplifying \& evaluating.

EXAMPLES

$$
\begin{aligned}
& \text { Simplify and evaluate each of the following: } \\
& 3^{3} \times 3^{-5}=3^{-2} \quad \frac{(-2)^{2}}{(-2)^{-3}}=(-2)^{2-(-3)} \\
& =\frac{1}{3^{2}} \\
& =(-2)^{5} \\
& =\frac{1}{9} \\
& =32 \\
& \left(\frac{3^{2}}{3^{4}}\right)^{2}=\frac{3^{4}}{3^{8}} \\
& =3^{-4}=\frac{1}{3^{4}}=\frac{1}{81}
\end{aligned}
$$

Zero \& Negative Exponents Practice

1. Complete the following table. Express your answers as whole numbers or fractions.

Exponent Form	5^{2}	5^{-2}	10^{3}	10^{-3}	x^{4}	x^{-4}	2^{x}	2^{-x}
Simplified Form	25	$\frac{1}{5^{2}} \frac{1}{25}$	1000	$\frac{1}{1000}$	x^{4}	$\frac{1}{x^{4}}$	2^{x}	$\frac{1}{2^{x}}$

2. Evaluate. Express your answers as whole numbers or fractions.
a) $12^{0}=1$
b) $8^{-1}=\frac{1}{8}$
c) $(-2)^{-4}=\frac{1}{(-2)^{4}}$
d) $(-12)^{0}=1$

$$
=\frac{1}{16}
$$

e) $\left(\frac{1}{4}\right)^{-2}=\left(\frac{4}{1}\right)^{2}$
f) $\begin{aligned}\left(\frac{1}{3}\right)^{-3} & =\left(\frac{3}{1}\right)^{3} \\ & =27\end{aligned}$
g) $(-3)^{-3}$
h) $\frac{1}{2^{-1}}=2=2$
$=\frac{16}{1}=16$

$$
=\frac{1}{(-3)^{3}}=\frac{1}{-27}
$$

3. Evaluate. Rewrite negative exponents and evaluate as fractions.
a) $-(16)^{0}=-1$
b) $4^{-4}=\frac{1}{4^{4}}=\frac{1}{64}$
c) $(-3)^{3}=-27$
d) $(-11)^{1}=-11$
e) $-(-6)^{3}$
f) 2^{-5}
g) $5^{-2}=\frac{1}{5^{2}}=\frac{1}{25}$
h) $3^{0}=1$

$$
\begin{gathered}
=-216)=\frac{1}{2^{5}}=\frac{1}{32}, 216
\end{gathered}
$$

4. Simplify each as a single power, then evaluate. Express your answers as fractions. The first two have been done for you.
d) $8^{3} \times 8=8^{3+1}$

$$
\begin{aligned}
& =8^{4} \\
& =4096
\end{aligned}
$$

e)

$$
\begin{aligned}
{\left[\frac{1}{\left(2^{4}\right)^{3}}\right.} & =\frac{1}{2^{4 \times 3}} \\
& =\frac{1}{2^{12}} \\
& =2^{-12} \\
& =\frac{1}{4096}
\end{aligned}
$$

f) $\left(10^{-2}\right)^{2}=10^{-4}=\frac{1}{10^{4}}$

h) $\left(\frac{1}{2^{4}}\right)\left(\frac{1}{2^{2}}\right)$

$$
=\frac{1}{z^{4+2}}=\frac{1}{z^{6}}=\frac{1}{64}
$$

$$
\text { g) } \begin{aligned}
& 6^{2} \div 6^{5} \\
= & 6^{-3} \\
= & \frac{1}{6^{3}}=\frac{1}{2(6}
\end{aligned}
$$

Hook: $\operatorname{Pg} 199 \pm 1,2,3,6,7,8$ Thinking 19 .

