4.1 Review of Exponent Laws

Goal: to review the exponent laws In multiplication, the terms that are multiplied together are called A repeated multiplication of equal factors can be expressed as a _____ \rightarrow 3⁴ is the _____ $3 \times 3 \times 3 \times 3 =$ \rightarrow 3 is the \rightarrow 4 is the = **EXAMPLES** Write each in expanded form and then evaluate to standard form $6^{2} + 3^{2} =$ $6^{3} =$ $3^2 \times 2^3 =$ POWER OF A NEGATIVE NUMBER Exponents affect ONLY the number it touches in a power. Notice the difference? $(-3)^2 =$ $-3^{2} =$ **EXPONENT LAWS** Add/Subtract Powers \rightarrow You can only add/subtract the _____ of the like powers $a^m + a^m = 2a^m$ $a^{m} + 3a^{m} =$ Multiply Powers \rightarrow To multiply powers with the SAME base ______ the exponents $x^2 \times x^3 =$ $a^m \times a^n =$ **Divide Powers** \rightarrow To divide powers with the **SAME base** ______ the exponents $x^7 \div x^4 =$ $a^m \div a^n =$ Power of a Power \rightarrow To simplify a power of a power _____ the exponents $(a^m)^n =$ $(x^4)^3 =$ Power of a Product or Quotient → Apply the ______ to each ______ in the product or quotient. $(ab)^m =$ $(xy)^{3} =$ $\left(\frac{x}{x}\right)$

MPM 2D1 – Unit 4: Working with Algebraic Expressions

Exponents Practice

1. Simplify each of the following in exponent form and evaluate to standard form.

a)
$$4 \times 4 \times 4 \times 4 \times 4 \times 4$$
 b) $-3 \times -3 \times -3$ c) $(5 \times 5 \times 5) + (6 \times 6)$

d)
$$(-9 \times -9) - (7 \times 7 \times 7)$$
 e) $(-2 \times -2 \times -2 \times -2) \times (5 \times 5)$ f) $(\frac{3}{5}) \times (\frac{3}{5})$ leave as a fraction

2. Write each of the following in expanded form and evaluate to standard form.

a)
$$3^4$$
 b) $(-5)^3$ c) $\left(\frac{-2}{3}\right)^3$
d) $(-4)^2 + 3^2$ e) $2^5 - 4^2$ f) $(-2)^4 \div 8$

3. Simplify each expression.

a)
$$x^4 \times x^2$$
 b) $(2xy)^2$ c) $(2xy)(xy)$

d)
$$y^6 \times y^3 \div y^7$$
 e) $x^3(x^2) - x^2(x)$ **f)** $(-2y^3)^3$

g)
$$(3x^2)^3$$
 h) $\frac{x^8}{x^3}$ i) $(\frac{x^5}{x^2})$

j)
$$\left(\frac{x^2}{y^2}\right) + 2\left(\frac{x}{y}\right)^2$$
 k) $\left(\frac{m^5n^2}{m^3}\right)^2$ **l**) $\frac{-6a^7b^4}{3a^2b^2}$

Why Was the Engineer Driving the Train Backwards?

Find the missing factor in each exercise below. Find your answer in the set of answers to the right of that exercise. Write the letter next to your answer in the box containing the number of that exercise.

(1) $\mathbf{x}^8 = (\mathbf{x}^5)(\underline{})$ (2) $24\mathbf{x}^5 = (6\mathbf{x}^2)(\underline{})$ (3) $-12\mathbf{x}^4 = (3\mathbf{x}^3)(\underline{})$ (4) $20\mathbf{x}^7 = (-4\mathbf{x}^2)(\underline{})$	$ \begin{array}{c} (T) & 4x^5 \\ (A) & -5x^5 \\ (H) & x^3 \\ (E) & -5x^3 \end{array} $	$ \begin{array}{c} (N) \ x^{6} \\ (O) \ 4x^{3} \\ (R) \ -4x^{8} \\ (1) \ -4x \end{array} $
(5) $a^{5}b^{8} = (a^{2}b^{3})($) (6) $4a^{2}b^{6} = (2ab^{2})($) (7) $-15a^{7}b^{4} = (-3a^{4}b)($) (8) $72a^{10}b^{3} = (-6a^{5}b^{2})($)	$ \begin{array}{c} (P) a^2b^2 \\ (V) 5a^3b^3 \\ (L) 2ab^7 \\ (O) 2ab^4 \end{array} $	$ \begin{array}{c} \textcircled{E} a^{3}b^{5} \\ \hline A -12a^{2}b^{4} \\ \hline H -12a^{5}b \\ \hline K 5a^{5}b^{3} \end{array} $
$\begin{array}{c} 9 \\ \hline 9 \\ \hline x^5 y^3 = (x^2)(\) \\ \hline 10 \\ -6x^2 y^7 = (-2y)(\) \\ \hline 11 \\ 14x^9 y^6 = (-7x^2 y^6)(\) \\ \hline 12 \\ 27x^4 y^3 = (9x^4 y)(\) \\ \hline \end{array}$	$ \begin{array}{c} (V) & -3y^4 \\ (L) & -2x^7 \\ (S) & -2x^6y \\ (B) & x^2y^4 \end{array} $	
$\begin{array}{c} (13) -3u^{4}v^{2} = (u^{2}v)(\ \) \\ (14) 32uv^{5} = (-16v^{2})(\ \) \\ (15) 121u^{2}v^{3} = (11u^{2}v)(\ \) \\ (16) -6u^{3}v^{12} = (2uv)(\ \) \end{array}$	$ \begin{array}{c c} \hline R & -2uv^6 \\ \hline M & 11v^2 \\ \hline P & 11uv^3 \\ \hline T & -3u^2v \end{array} $	$ \begin{array}{c} (R) & -3u^2v^4 \\ (C) & -3u^2v^{11} \\ (E) & 3u^2v^6 \\ (D) & -2uv^3 \end{array} $
8 12 1 9 14 4 11 2	16 6 15 10 13	3 3 7 5

78 ALGEBRA WITH PIZZAZZ! © Creative Publications

OBJECTIVE 3-c: To find a missing factor of a monomial.

Date:

4.2 Zero and Negative Exponents

Goal : to determine the meaning of zero and negative exponents

Expression to be Simplified	Write in Expanded Form	Using Exponent Laws
$\frac{2^3}{2^1}$	$=\frac{2\times2\times2}{2}$ $=4$	$2^{3-1} = 2^2$ = 4
$\frac{2^3}{2^2}$		
$\frac{2^3}{2^3}$		
$\frac{2^3}{2^4}$		
$\frac{2^3}{2^5}$		

Complete the following chart. Evaluate each to standard form. Leave as whole numbers or fractions.

HOW is the exponent law expression **RELATED TO** the expanded form expression?

What do you notice about the result of an expression with an exponent of zero?

What do you notice about the result of an expression with an exponent that is negative?

THE ZERO EXPONENT

Any	number (or expression) divided	by itself is equal to		
Use	exponent laws to evaluate each	of the following:		
a)	2 ³ b)	3 ²	c)	x^4
	$\overline{2^3}$	$\overline{3^2}$		$\overline{x^4}$

Therefore, for zero exponents: Any BASE raised to an exponent of zero is equal to _____

MPM 2D1 - Unit 4: Working with Algebraic Expressions

EXAMPLES - Evaluate.

 $7^{0} =$

 $3 \times 2^0 =$ $x^{0} =$ $x^{0}y =$

THE NEGATIVE EXPONENT

Any BASE raised to a NEGATIVE exponent is equal to the ______ of the base raised to the same _____ exponent.

Use exponent laws to simplify each of the following. Then evaluate to standard form.

a)	2^{3}		4 ⁵
	$\frac{2^3}{2^4}$	35	$\overline{4^7}$

EXAMPLES

Simplify and evaluate. $(-8)^{-2} =$ $2^{-3} =$ $7^{-1} =$ $(-3)^{-3} =$

EXERCISE: Complete the following table.

Exponent Form	3 ²		10°	3-3		2 ⁻ⁿ		(-1225) ⁰
Simplified Form		$\frac{1}{5}$			$\frac{1}{3}$		$\frac{1}{5^m}$	

SIMPLIFYING EXPRESSIONS

The rules for positive exponents also work for zero and negative exponents. Continue to follow the rules for order of operations (BEDMAS) when simplifying & evaluating.

EXAMPLES

Simplify and evaluate each of the following:

 $3^3 \times 3^{-5} =$ $\frac{(-2)^2}{(-2)^{-3}} =$ $\left(\frac{3^2}{3^4}\right)^2 =$

MPM 2D1 – Unit 4: Working with Algebraic Expressions

Zero & Negative Exponents Practice

Exponent Form	5 ²	5-2	10 ³	10 ⁻³	x^4	x^{-4}	2 ^{<i>x</i>}	2^{-x}
Simplified Form								
Evaluate. Expr	ess your		s whole nun					
a) 12°		b) 8 ⁻¹		c) ((-2) ⁻⁴	d) (-12) ⁰	
e) $\left(\frac{1}{4}\right)^{-2}$		f) $\left(\frac{1}{3}\right)$	3	a) ((-3) ⁻³	h) $\frac{1}{2^{-1}}$	
(4)		7 (3)		97 \			$\frac{1}{2^{-1}}$	
Evaluate. Rewr a) $-(16)^0$	rite nega	itive expor b) 4 ⁻⁴	nents and e	valuate as c) (b) (-11) ¹	÷
		·		•				
e) $-(-6)^3$		f) 2 ⁻⁵		g) (5 ⁻²	h) 3 [°]	
6 , 10, 1								
Simplify each a The first two ha	ve been	done for	you.	-			ctions.	
d) $8^3 \times 8 = 8^{32}$	+1	e)	$\frac{1}{(2^4)^3} = \frac{1}{2^{43}}$	×3	f	$(10^{-2})^2$		
$= 8^4$			(2) 2					

$= 8^4$ = 4096	$(2^{-})^{-1} = \frac{1}{2^{12}}$ $= 2^{-12}$ $= \frac{1}{4096}$	
g) $6^2 \div 6^5$	h) $\left(\frac{1}{2^4}\right)\left(\frac{1}{2^2}\right)$	i) $\left(\frac{1}{5}\right)^{-9} \times \left(\frac{1}{5}\right)^{7}$

Huk: fg 199 \$ 1,2,3,6,7,8 Thinking 19.