\qquad

Do you Remember?

Pythagorean Theorem

A right triangle is \qquad
The hypotenuse of a right triangle is
side \qquad to 90°

The largest side in a triangle is the hypot

The relationship between the sides of a right triangle is: \qquad $a^{2}+b^{2}=c^{2}$

Examples:

1. A right-angled triangle has legs that measure 7.9 cm and 3.2 cm . Calculate the length ofthe hypotenuse.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& x^{2}=3.2^{2}+79^{2} \\
& x^{2}=72.65 \\
& x=\sqrt{72.65} \\
& =8.5 \mathrm{~cm}
\end{aligned}
$$

2.A right-angled triangle has a leg thatmeasures 10.6 mm and a hypotenuse thatmeasures 14.8 mm . Calculate the length ofthe other leg.

$$
\begin{aligned}
& b^{2}=c^{2}-a^{2} \\
& x^{2}=14.8^{2}-10.6^{2} / x \\
& 10.6
\end{aligned}
$$

$$
x^{2}=106.63
$$

$$
x=\sqrt{106.68}
$$

$$
=10.3 \mathrm{~mm}
$$

2. Mr. Patel presented his mathematics class with several triangles.

The side lengths were the following:
Triangle A: 15.3, 20.4, 25.5
Concept: check if $a^{2}+b^{2}=c^{2}$
Triangle B: 3.1, 4.1, 5.1
Triangle C: 8, 15, 17
Triangle D: 7, 24, 24

$$
\begin{array}{c|cc}
\text { Which are right triangles? } \\
\Delta_{A}: a^{2}+b^{2}=? c^{2} & \Delta_{B}: 3.1^{2}+4.1^{2}=26.42
\end{array}
$$

Which are right triangles?

$$
15.3^{2}+20.4^{2}=650.25
$$

$$
25 \cdot 5^{2}=650.25
$$

yes. It is a
right-angied triangle

$$
5.1^{2}=26.01
$$

$$
\therefore 26.42 \neq 2601
$$

$$
\Delta_{B} i>n o t \text { a night }
$$

angle triangle

$$
\begin{array}{r}
A_{C}+15^{2}=289 \\
17^{2}=289 \\
\therefore \text { yes, it is a }
\end{array}
$$

night angle triangle

$$
\Delta_{D}: 7^{2}+24^{2} \neq 24^{2}
$$

$$
\therefore \text { not a right }
$$

angle triangle
\qquad

Solving Proportions

A ratio is a comparison of two numbers. A proportion is just two ratios that are equal to each other. Be sure that the same units of measurement are in the numerator and the same units of measurement are in the denominator.

Example: There are 149 nurses, 69 doctors, and 230 patients in a hospital.

1. Find the ratios (reduce to lowest terms)

- Nurses to doctors:

$$
149: 69
$$

- Doctors to patients:

$$
\begin{gathered}
69: 230 \\
3: 10
\end{gathered}
$$

- Patients to doctors:
$10: 3$

2. The hospital is required to have one doctor for every 5 patients and 2 nurses for every 5 patients. What is the minimum number of doctors and nurse that the hospital must have?

$$
\text { doctor: } \begin{gathered}
\frac{5 \text { pot }}{230 \text { pit }}=\frac{1 d x}{x ?} \\
\frac{5}{230}=\frac{1}{x}(\text { crossmultpes }) \\
5 x=230 \\
x=46 \\
\therefore 46 \text { doctors }
\end{gathered}
$$

$$
\text { Unit Conversions } \quad 4446 \times 2=92 \text { doctors. }
$$

The metric system is based on powers of 10 .

1. Convert 3 m to cm

$$
\begin{gathered}
1 n=100 \mathrm{~cm} \\
\therefore 3 . u=300 \mathrm{~cm} \\
\vdots
\end{gathered}
$$

2. Convert 600 mg to g $19=1000 \mathrm{mg}$
a, (3places) $1 \mathrm{~m}=100 \mathrm{~cm}$
$\therefore 0.69=600 \mathrm{mg}$
3. Convert 42000 km to cm
$1 \mathrm{~km}=1000 \mathrm{~m}$

$$
1 \mathrm{~m}=100 \mathrm{~cm}
$$

$$
\therefore 5 \text { places }
$$

\qquad

Many people use the imperial system of measurement. The most common imperial units of length are the inch, foot, yard and mile.

Example: Match each measure with its equivalent
a) 6 mm
b) 140 yd

c) 52.819 miles $4 \subset \mathbf{C} 0.23622 \mathrm{in}$.
d) $29 \mathrm{~cm}^{2} \longleftrightarrow$ D 128.016 m

Imperial to Metric	Metric to Imperial
1 inch $=2.54 \mathrm{~cm}$	$1 \mathrm{~cm} \doteq 0.3937$ inch
1 foot $=30.48 \mathrm{~cm}$	$1 \mathrm{~m} \doteq 39.37$ inches
1 foot $=0.3048 \mathrm{~m}$	$1 \mathrm{~m} \doteq 3.2808$ feet
1 mile $\doteq 1.609 \mathrm{~km}$	$1 \mathrm{~km} \doteq 0.6214$ mile

c) 52.819 miles $=52.819 \times 1.609 \mathrm{~km}$

$$
\dot{=} 85 \mathrm{~km}
$$

$\therefore 52.819$ miles $=85 \mathrm{~km}$ (B)
b) $140 \mathrm{gd}=140 \times 3$ feet

$$
=420 \text { feet }
$$

$$
1 m=3.2808 \text { feet }
$$

$$
\therefore 420=128.016 m(D)
$$

$$
3.2808
$$

a) must be (c)
d) must be A since cm^{2}, in ${ }^{2}$

Seatwork: Page 2 \#1-3, Page 3 \#1-3
\qquad Date: \qquad
Exit Card
13. Assessment Focus A carpenter is building a bookshelf against the sloped ceiling of an attic.
a) Determine the length of the sloped ceiling, $A B$, used to build the bookshelf.
b) Determine the measure of $\angle \mathrm{A}$. Is $\angle A$ an angle of inclination or an angle of depression? Why?
c) Describe another method to solve part b. Which method do you prefer? Why?

a)

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& x^{2}=3.24^{2}+2.35^{2} \\
& x^{2}=16.02 \\
& x=\sqrt{16.02} \\
& =4.0
\end{aligned}
$$

b)

$$
\begin{aligned}
& \tan \theta=\frac{2.35 \rightarrow \text { opp }}{3.24 \rightarrow \operatorname{adj}} \\
& 0=\tan ^{-1}\left(\frac{2.35}{3.24}\right)
\end{aligned}
$$

angle of inclination
c) We can use

$$
\begin{aligned}
\sin \theta & =\frac{2.35}{4} \\
\theta & =\sin ^{-1}\left(\frac{2.35}{4}\right) \\
& =36^{\circ}
\end{aligned}
$$

