MCR3U1 Day Ø: Systems of Linear-Quadratic Equations Date: _____ Chapter 3: Quadratic Relations

Systems of Linear-Quadratic Equations

Recall:

The graph of a linear equation is a _____.

The graph of a quadratic equation is a _____

The diagrams below illustrate all the possible scenarios, in terms of intersection points, between a line and a parabola.

As in the case of a system of two linear equations, the intersection point(s) of a linear equation with a quadratic equation can be found graphically and/or algebraically.

Ex1. Find the point(s) of intersection of the given parabola and line. Solve graphically using desmos and algebraically.

			10							
			8							
		7	7							
			5							
			4							
			3							
			1							
(-10 -0 -8	-7 -6 -4	-4 +)	-2 -1	1	2 3.	4. 5	6 3	8	9	10
			~1			ł				
			-2							
			-3							
			-4							
			-5					1		
			· -6							
			-7							
			-8			11.7	· · · .	1		
	1		*23			1				
	1		-9							

a) $y = -x^2 + 4x + 2$ and y = x + 2

1

MCR3U1 Day Q: Systems of Linear-Quadratic Equations

b) $y = x^2 + 2x - 3$ and y = 4x - 4

Ex2. Determine the number of points of intersection of $y = 3x^2 + 12x + 14$ and y = 2x - 8 without solving.

Ex3. The revenue equation for a company is $R(t) = -40t^2 + 300t$, where *t* is the ticket price in dollars. The cost equation is C(t) = 1600 - 220t. Determine the ticket price that will allow the company to break even.

Ex4. Determine the value(s) of k such that the linear equation y = -5x + k does not intersect the parabola $y = -2x^2 + 3x + 1$.

1. Find the intersection of a) $y = x^2 - 5x + 11$ and y = 3x - 4.

b) $y = -3x^2 - x + 9$ and y = -8x + 11.

c) $y + 8 = 5x^2 + 2x$ and y + 7 = 6x.

Homework: p. 198 #1-4, 6, 8, 12

1a) (3, 5), (5, 11) b) $\left(\frac{1}{3}, \frac{25}{3}\right)$, (2, -5)	i) c) $\left(-\frac{1}{5}, -\frac{41}{5}\right)$, (1, -1)
---	--