\qquad

Systems of Linear-Quadratic Equations

Recall:

The graph of a linear equation is a \qquad .
The graph of a quadratic equation is a \qquad -

The diagrams below illustrate all the possible scenarios, in terms of intersection points, between a line and a parabola.

Scenario 1:

Scenario 2:

Scenario 3:

As in the case of a system of two linear equations, the intersection point(s) of a linear equation with a quadratic equation can be found graphically and/or algebraically.

Ex1. Find the point(s) of intersection of the given parabola and line. Solve graphically using desmos and algebraically.
a) $y=-x^{2}+4 x+2$ and $y=x+2$

MCR3U1
Day 9: Systems of Linear-Quadratic Equations
b) $y=x^{2}+2 x-3$ and $y=4 x-4$

Ex2. Determine the number of points of intersection of $y=3 x^{2}+12 x+14$ and $y=2 x-8$ without solving.

Ex3. The revenue equation for a company is $R(t)=-40 t^{2}+300 t$, where t is the ticket price in dollars. The cost equation is $C(t)=1600-220 t$. Determine the ticket price that will allow the company to break even.

Ex4. Determine the value(s) of k such that the linear equation $y=-5 x+k$ does not intersect the parabola $y=-2 x^{2}+3 x+1$.

Intersection of Linear and Quadratic Functions

1. Find the intersection of
a) $y=x^{2}-5 x+11$ and $y=3 x-4$.
b) $y=-3 x^{2}-x+9$ and $y=-8 x+11$.
c) $y+8=5 x^{2}+2 x$ and $y+7=6 x$.

Homework: p. 198 \#1-4, 6, 8, 12

1a) $(3,5),(5,11)$ b) $\left(\frac{1}{3}, \frac{25}{3}\right),(2,-5)$ c) $\left(-\frac{1}{5},-\frac{41}{5}\right),(1,-1)$

