Finding The Vertex of a Parabola

DATE:

Sometimes we are given the quadratic function in the form $y = ax^2 + bx + c$. This is called <u>standard form</u>. We need to convert it to the form $y = a(x - h)^2 + k$ to identify the <u>vertex</u>. The method we use is <u>completing</u> the square.

Find the value of "c" that will make each expression a perfect square trinomial. Remember a perfect square trinomial is in the form ______ or _____.

$c = 16$ $x^{2} + 8x + c (8)$	$x^2 - 2x + c$ $x^2 - 2x + c$	$\frac{12x+c}{12x+c}$ (haff of) ²
$\frac{x^{2}+8x+16}{(x+4)^{2}}$	$\frac{x^{2} = 2x + 1}{(x - 1)^{2}}$	$(-12)^{2}$ $(x-6)^{2}$
Steps	Example #1 $y = x^2 - 6x + 5$	Example #2 $y = x^2 - 2x + 1$
Common factor the coefficient of the x^2 term from the first two terms. Do not factor out the x.	y= (x²−6x)+5	$y=(x^{2}-2x)+1$
Divide the coefficient of x by 2, then square it.	y= (x ² -60et9-9)+5	$y = (x^2 - 2x + 1 - 1) + 1$
Add and subtract that value inside the bracket of the equation two steps above.	$\begin{pmatrix} -6 \\ -2 \end{pmatrix}^2 = 9$	$\left(\frac{-2}{z}\right)^2 = 1$
Move the last term in the bracket to the outside of the bracket and multiply it with the number in front of the bracket. Add the two constants together.	$y = (x^{2}-6x+9) - 9+5$	$y = (x^{2} - 2x + 1) - 1 + 1$
Factor the perfect square trinomial inside the bracket.	$y = (x - 3)^2 = 4$	$y = (x - 1)^{2}$

Day 9:

1. Convert $y = (x^2 + 2x) + 5$ to the form $y = a(x - h)^2 + k$ and state its vertex.

2. Convert $y = x^2 - 6x - 4$ to the form $y = a(x - h)^2 + k$ and state its vertex

$$y = (x^{2} - 6x + 9 - 9) - 4$$

= (x - 3)² - 13
$$y(3, -13)$$

3. Convert $y = x^2 + 4x + 3$ to the form $y = a(x - h)^2 + k$ and state its vertex

$$y = (x + 4x + 4 - 4) + 3$$

= (x+2)² - 1
4)
$$y = y^{2} - 14x + 1$$

$$=(x-7)^2-48$$

Homework: p. 270 #3beg, 4ac, 6a, 7ace, 8bc, 19