\qquad

Sometimes we are given the quadratic function in the form $y=a x^{2}+b x+c$. This is called
standard form. We need to convert it to the form $y=a(x-h)^{2}+k$ to identify the Vertex. The method we use is completing the square.

Find the value of " c " that will make each expression a perfect square trinomial. Remember a perfect square trinomial is in the form \qquad or \qquad .

$$
\begin{array}{ccc}
c=16 \\
x^{2}+8 x+c\left(\frac{8}{2}\right)^{2} & \frac{x^{2}-2 x+c}{} & \\
x^{2}+8 x+16 \\
(x+4)^{2} & \frac{(x-1)^{2}(x-1)}{(x-1)^{2}} & \frac{x^{2}-12 x+c}{x^{2}-12 x+36} \\
& &
\end{array}
$$

1. Convert $y=\left(x^{2}+2 x\right)+5$ to the form $y=a(x-h)^{2}+k$ and state its vertex.

$$
\begin{aligned}
& y=\underbrace{\left(x^{2}+2 x+1\right.}-1)+5 \quad\left(\frac{2}{2}\right)^{2} \\
&=(x+1)^{2}+4 \\
& V(-1,4)
\end{aligned}
$$

2. Convert $y=x^{2}-6 x-4$ to the form $y=a(x-h)^{2}+k$ and state its vertex

$$
\begin{aligned}
& y=(\underbrace{x^{2}-6 x+9}-9)-4 \\
& =(x-3)^{2}-13 \\
& V(3,-13)
\end{aligned}
$$

3. Convert $y=x^{2}+4 x+3$ to the form $y=a(x-h)^{2}+k$ and state its vertex

$$
\begin{aligned}
& y=(\underbrace{x^{2}+4 x+4}-4)+3 \\
& =(x+2)^{2}-1
\end{aligned}
$$

4) $y=x^{2}-14 x+1$

$$
=(x-7)^{2}-48
$$

Homework: p. 270 \#3beg, 4ac, 6a, Tace, Bbc, 19

