\qquad
Date: \qquad

Zeros of Quadratic Functions

From a Graph

There are 3 possible parabola events. Determine the number of x-intercepts for each:

\#x-intercepts $=2$ \qquad $\# x$-intercepts $=0 n e$ $\#$ x-intercepts $=0$ 0

From Factored Form

$y=a(x-p)(x-q)$ means 2 zeros: 1 at p and 1 at q
$y=a(x-p)^{2}$ means 1 zero at p
Ex. $y=4(x-2)(x+3)$ has 2 zeros)

From Vertex Form

$y=a(x-h)^{2}+k$ means the vertex is $a t(h, k)$ and " a " indicates the direction of opening.
If $k=0$, there is 1 zero.
If a and k have the same sign, there are no zeros.
If a and k have opposite signs, there are 2 zeros.
Ex. $y=3(x-4)^{2}+5$ has \qquad zeros) since \qquad
$y=-2(x+3)^{2}$ has $\quad 1$ zero (s) since \qquad . $y=(x-2)^{2}-5$ has 2 zero (s) since \qquad - .

From Standard Form

The function $y=a x^{2}+b x+c$ has zeros $a t x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, while the equation $a x^{2}+b x+c=0$ has roots at $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
We call $b^{2}-4 a c$ the discriminant.
If $b^{2}-4 a c>0$, there are 2 zeros or roots.
If $b^{2}-4 a c=0$, there is 1 zero or root.
If $b^{2}-4 a c<0$, there are no zeros or real roots. (roots are complex - see teacher for more info)
Ex. $y=3 x^{2}+2 x-4 . b^{2}-4 a c=\frac{4-4(3)(4)>0}{16}$, so it has $\frac{2}{0}$ zeros).

$$
x^{2}+4 x+10=0 . b^{2}-4 a c=16-4(10)<0 \text {, so it has } 0 \text { root (s). }
$$

\qquad
Date: \qquad
Example 1: Determine the nature of the roots of the following quadratics by evaluating the discriminant.
a. $8 x^{2}-56 x+98=0$
b. $2 x^{2}=3 x-6$
c. $5 x^{2}-3 x=4$
$D=(-56)^{2}-4(8)(98)$
$2 x^{2}-3 x+6=0$
$5 x^{2}-3 x-4=0$
$=3136-3136$
$D=b^{2}-4 a c$
$=0$
\therefore one real

$$
\begin{aligned}
& =9-4(2)(6) \\
& =9-48 \\
& <0
\end{aligned}
$$

2010
Normal
zen.

Example 2: Find the values) of the constant k for the given types of roots.

$$
\begin{aligned}
& \text { a. } x^{2}-k x+16=0 \text { (one real root) } \\
& D=0 \Rightarrow b^{2}-4 a c=0 \\
& k^{2}-4(1)(16)=0 \\
& k^{2}-64=0 \\
& k^{2}=+64 \\
& k= \pm 8
\end{aligned}
$$

$$
36-4(k)(-9)>0
$$

(In other words, $k= \pm 8$
will makede a perfedsquare)
tinomice
c. $k x^{2}=6 x+9$ (2 real roots)
$k x^{2}-6 x-9=0$

$$
b^{2}-4 a c>0
$$

$$
36+36 k>0
$$

b. $2 x^{2}-3 x+k+1=0$ (no real roots)

$$
a=2 \quad b=-3 \quad c=k+1
$$

$$
b^{2}-4 a c<0
$$

$$
9-4(2)(k+1)<0
$$

$$
9-8 k-8<0
$$

$$
\begin{aligned}
& 9-8 k-8<0 \\
& -8 k+1<0 \\
& -8 k<-1
\end{aligned}
$$

$$
k>\frac{1}{8}
$$

Homework: p. 185 \#(1-2)cd,3-11,16
Note: Multiplying or dividing both sides will FLIP the inequality sign!!

