Day8-MCR3U

Jame:	PATE	CKEY

Date:__

Transformations

N

Part 7 - Transformations of y = af[k(x-d)]+c

Transformations can be combined so that more than one transformation is performed on a given function. Apply the transformations in the order RST:

- 1) Reflect: reflect about the x and/or y axis
- 2) Stretch: stretch vertically and/or horizontally
- 3) Translate: translate left or right and/or up or down

Recall the following transformation rules:

a: vertical stretch by a factor of a (reflect about the x-axis if a is negative)

k: horizontal stretch by a factor of 1/k (reflect about the y-axis if k is negative)

d: translate right d units (left if d is negative)

c: translate up c units (down if c is negative)

a) What transformations have been performed on y = x to give y = 4(x-6)?

vertical stretch by a-factor of 4 translate right 6 units.

b) What transformations have been performed on $y = x^2$ to give $y = (-x)^2 + 5$?

reflect about y-axis, translate 5 units up.

c) What transformations have been performed on $y = \sqrt{x}$ to give $y = -\sqrt{\frac{1}{6}x}$?

Reflect about x-axis, horeron-tally stratched by a factor of 6.

d) What transformations have been performed on $y = \sqrt{x}$ to give $y = 3\sqrt{2x-2} - 4$? Hint: factor k first! $3\sqrt{2(x-1)} \neq 4$

Vertically stretched by a factor of 3. Honzontally compressed by a factor of $\frac{1}{2}$, transicte 1 unit right and 4 down. e) What transformations have been performed on $y = x^2$ to give $y = -2\left(-\frac{1}{3}x-3\right)^2 + 7$? Hint: factor k first! $y = -2\left(-\frac{1}{3}(x+9)\right)^2 + 7$

Name:_____

Date:____

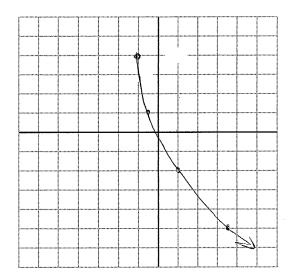
Transformations

Part 8 - The Graph of y = af[k(x-d)]+c

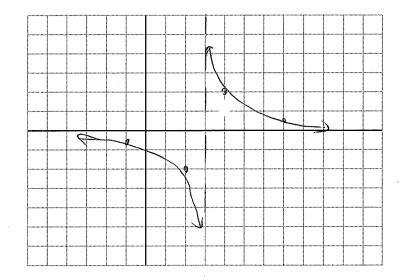
First determine the parent function y = f(x). This gives you the general shape of the graph.

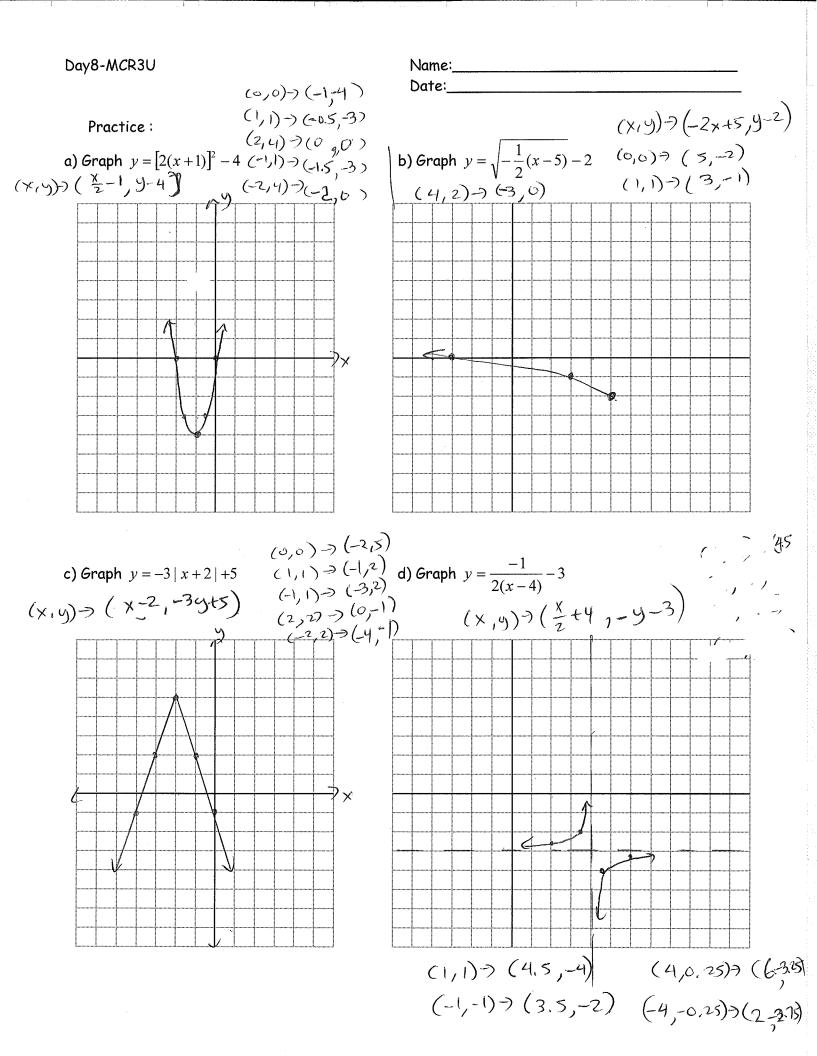
Determine the values of a, k, d, and c. Note: use the actual value of k, not 1/k

Determine the key points (and asymptotes, if they exist) for the parent function.


Apply the mapping formula $(x, y) \rightarrow \left(\frac{x}{k} + d, ay + c\right)$ to each ordered pair (x, y)

For the reciprocal function, y = 1/x, there is a vertical asymptote at x = d and a horizontal asymptote at y = c.


Graph using a smooth curve and arrows where appropriate. Don't forget to label the axes and scales.


Ex. 1. Graph
$$y = -3\sqrt{2(x+1)} + 4$$

 $(\chi, \gamma) \rightarrow (\frac{\gamma}{2} - 1, \frac{3}{3}y + 4)$
Parent function : $y = \sqrt{x}$

a = -3, k = 2, d = -1, c = 4 Key points and mapping: (0, 0) \rightarrow (0/2 + -1, -3(0) + 4) \rightarrow (-1, 4) (1, 1) \rightarrow (1/2 + -1, -3(1) + 4) \rightarrow (-0.5, 1) (4, 2) \rightarrow (4/2 + -1, -3(2) + 4) \rightarrow (1, -2) (9, 3) \rightarrow (9/2 + -1, -3(3) + 4) \rightarrow (3.5, -5) Asymptotes : none

Ex 2. Graph
$$y = \frac{2}{x-3}$$

Parent function: $y = \frac{1}{x}$
 $a = 2, k = 1, d = 3, c = 0$ (4, 0.25)
Key points and mapping: (7, 0.5)
(1, 1) \rightarrow (1/1 + 3, 2(1) +0) \rightarrow (4, 2)
(-1, -1) \rightarrow (-1/1 + 3, 2(-1) +0) \rightarrow (2, -2) (-9, -0.5)
Asymptotes: VA: x = 3
HA: y = 0 \rightarrow (-1, 7)

Name:_____

Date:_____

Summary: Transforming Relations

Transformat	ion of y = f(x)	Description of Transformation	Mapping
y = -f(x)		Reflection about X-axis	(x, -y)
y =	f(-x)	Reflection about x-axis	(- × , y)
y = a f(x)	a > 1	vertically strephed by a factor of 1al.	(x, ay)
	0 < a < 1	vertically compressed by a factor of 1al.	(×, ay)
y = f(kx)	k > 1	horizontally compressed by a factor of TKI	$\left(\begin{array}{c} x \\ k \end{array}\right)$
	0 < k < 1	hourontally stretched by factor of 1/1	$\begin{pmatrix} x \\ \overline{k} \end{pmatrix}$
γ = f(x) + c	c > 0	translation 2' Units up	(x, y+c)
	c < 0	franslation 101 Units down	(x,y+c)
y = f(x - d)	d > 0	Hranslations right 2' UNHS.	(x+2, y)
	d < 0	translate left 121 units.	(X+d) Y
γ = a f[k(x - d)] + c		Reflections Stretchen Trapslations	$\left(\begin{array}{c} x \\ k \neq d \end{array}, ay + c \right)$