Vertex Form Word Problems:

1. A red flare is used by some boaters in an emergency. The flight of the flare is modelled by the function $h=-9(t-3)^{2}+83$ where h is the height (m) of the flare and t is the -time
$(1,3,5,7)$
a) Sketch the path of the flare.
(s) that the flare is in flight. vertex (5,83) opening dour (max)

c) After how many seconds does the flare reach its maximum height?

After 3. seconds.
d) What is the height of the flare after 2 seconds?

From the graph: 74 m

$$
\begin{aligned}
& \text { What is the height of the flare after } 2 \text { seconds? } \\
& \begin{aligned}
h & =-9(t-3)^{2}+83 \\
& =-9(2-3)^{2}+83
\end{aligned}
\end{aligned}
$$

\therefore After 2 seconds the height was
Find another time that the flare is at the height in part d.

$$
t=4 \text { seconds (same horizonk' }
$$ 74 m . distance from $t=3$)

\qquad
2. At a fireworks display, a firework display, a firework is launched from a height of 2 m above the ground and reaches a maximum height of 40 m at a horizontal distance of 10 m .
a. Determine an equation to model the flight path of the firework.

$$
\begin{aligned}
& \text { vertex }(10,40) \\
& h=a(t-10)^{2}+40 \\
& 2=a(0-10)^{2}+40 \\
& 2=100 a+40 \\
& -40 \\
& \frac{-38}{100}=\frac{100 a}{100} \\
& a=-\frac{19}{50}=-3.38
\end{aligned}
$$

b. The firework continues to travel an additional 1 m horizontally, after it reaches its maximum height, before it explodes. What is its height when it explodes?

$$
\begin{aligned}
& h=? \quad t=11 \\
& h=-0.38(11-10)^{2}+40 \\
& =-0.38+40 \\
& =39.62 \mathrm{~m} .
\end{aligned}
$$

$$
\therefore H_{2}=-0.38(t-10)^{2}+40
$$

\therefore The height was 39.62 when it exploded.
c. At what other horizontal distance is the firework at the same height as in part b$)$?

$$
t=9 \text { seconds. }
$$

Homework : page. 185 \#11-14

