Day 7: Solve Problems Using Quadratic Equations
Warm-Up: The height, h metres, of a springboard diver above the surface of the water t seconds after he leaves the board is given by $h=-5 t^{2}+10 t+3$.

$$
\begin{aligned}
& \text { a) How high was the diving board? } \\
& \text { Set } t=0 \\
& \text { Solve for } h(\text { find } h) \\
& h=-5(0)^{2}+10(0)+3 \\
& =3 \mathrm{~m}
\end{aligned}
$$

b) When does he hit the water?

Set $h=0$

$$
\begin{aligned}
& \quad-5 t^{2}+10 t+3=0 \\
& t=\frac{-10 \pm \sqrt{10^{2}-4(-5)(3}}{2(-5)} \\
& =\frac{-10 \pm \sqrt{160}}{-10} \\
& t_{1}=\frac{-10+12.65}{-10} \quad t_{2}=\frac{-10-12.65}{-10} \\
& =-0.265(1 \mathrm{nadmissin} 6)=2.265
\end{aligned}
$$

d) For how long is he above a height of 5 m ?
c) Determine the diver's maximum height above the water.

Complete the square

$$
\begin{aligned}
& h=5 \\
& s=-5 t^{2}+10 t+3 \\
& -5 t^{2}+10 t-2=0 \Rightarrow 5 t^{2}-10 t+2=0 \\
& t=\frac{10 \pm \sqrt{(10)^{2}-4(5)(2)}}{10}, t_{1}=1.77 \\
& =\frac{10 \pm \sqrt{60}}{10}, t_{2}=0.23
\end{aligned}
$$

$$
\therefore 1.77-0.23=1.54
$$

Date: \qquad
Day 9: The Quadratic Equation APPLICATIONS
Chapter 6: Quadratic Equations

1. An equation representing the height of a flare, h metres, above the release position, after t seconds, is $h=-5 t^{2}+100 t$.
a. What is the height of the flare after 3 s ? $(255 \mathrm{~m})$
b. What is the maximum height reached by the flare? (500 m)
c. What is the height of the flare after 25 s ? (-625 m)
d. Does your answer in part c make sense? Explain. (No . . .)

\therefore Its $255 \mathrm{~m} . \quad\left\{\begin{array}{l}-5(t-10)^{2}+500 \\ \therefore \text { The max height is } 500 \mathrm{~m} .\end{array}\right.$
c) $80=-5 t^{2}+100 t$
$5 t^{2}-100 t+80=0 \quad G C F=5$

$$
\begin{aligned}
& x_{1}=\frac{20+\sqrt{400-64}}{2}=\frac{20+18.3}{2}=19.2 \\
& x_{2}=\frac{20-\sqrt{400-64}}{2}=\frac{20-18.3}{2}=0.85 \\
& \therefore 19.2-0.85=18.3 \mathrm{sec}
\end{aligned}
$$

2. When a flare is fired vertically upward, its height, h metres, after t seconds is modelled by the equation $h=-5 t^{2}+153.2 t$.
a. Is the flare on the ground or on a stand? (ground)
b. How long is the flare in the air? $(30.64 \mathrm{sec})$
c. What is the maximum height of the flare? $(1173.5 \mathrm{~m})$
d. For how many seconds is the flare higher than $1 \mathrm{~km} .(11.78 \mathrm{~s})$
a. Std form gives the y int. I c. We cen overage 1 d $1000=-5 t^{2}+153.2 t$ $h=-5 t^{2}+153.2 t+O$
yin $=0, i$ s on the ground. y tint $=0$, it's an the ground.
b. We need to find \mathbb{Z}-int.
O. $-5 t^{2}+153.2 t \quad G C F=-5 t$

$\begin{array}{rr}-5 t=0 & t-30.64=0 \\ t=0 \quad t=30.64\end{array}$

\therefore It's in the air for 3064 se .

$$
1 K_{1}=\frac{153,2+58.7}{10}=21.21
$$

$$
\begin{aligned}
& X_{2}=\frac{153.2-58.9}{13}=943 \\
& \therefore 2[21-9.4]=11.785, i t \text { was above } \\
& \quad 1 \mathrm{~km}
\end{aligned}
$$

3. A rectangular lot is bounded on one side by a river and on the other three sides by a total of 30 m of fencing. A formula that represents the area of the lot, A square metres, in terms of its width, x metres, is $A=30 x-2 x^{2}$. Calculate the dimensions of the

$$
\begin{aligned}
& \text { largest possible lot. (} 7.5 \mathrm{~m} \text { by } \mathrm{m} \text {) } \\
& \left\{\begin{array}{l}
R \\
1 \\
J \\
E \\
R
\end{array}\right\}=\begin{array}{l}
\omega \\
30=2 \omega+L \\
30-2 \omega L
\end{array} \\
& A=\omega(30-20) \\
& =30 \omega-2 \omega^{2} \\
& =2 \omega^{2}+30 \omega \\
& =-\left(\omega^{2}-15 \omega\right) \frac{-15}{2},(-15)^{2}-56.25 \\
& =-2\left(\omega^{2}-15 \omega+56.25-56.71\right) \\
& =-2\left(\omega^{2}-15 \omega+56.25\right)+112.5 \\
& =-2(\omega-7.5)^{2}+1 n .5
\end{aligned}
$$

\therefore the dimensions are

\qquad

Day 9: The Quadratic Equation APPLICATIONS

Chapter 6: Quadratic Equations
4. A ball is dropped over the roof of a building. The equation to model this scenario is:
the height of the building in feet after t seconds.
a. How high is the building? (75 ft)
b. How long does it take the ball to land? sec)

5. The power, P watts, supplied to a circuit by a $9-\mathrm{V}$ battery is given by the formula $P=9 I-0.5 I^{2}$, where I is the current in amperes. What is the maximum power? (40.5 W)

$$
\begin{aligned}
P & =-0.5 I^{2}+9 I \\
& =-0.5\left(I^{2}-18 I\right)-18 / 2=-9(-9)^{2}=81 \\
& =-0.5\left(I^{2}-(8 I+81-81)\right. \\
& =-0.5\left(I^{2}-18 I+81\right)+40.5 \\
& =-0.5(I-9)^{2}+40.5 \\
& \text { Vertex is }(9,40.5) ; \text { therefore the max power is } 40.5 \text { w }
\end{aligned}
$$

6. Computer software programs are sold to students for $\$ 20$ each. Three hundred students are willing to buy them at this price. For every $\$ 5$ increase in price, there are 30 fewer students willing to buy the software. A formula that represents the revenue, R dollars, for an x dollar increase in price is $R=-6 x^{2}+180 x+6000$. Calculate the selling price that will produce the maximum revenue. What is the maximum revenue? $(\$ 35, \$ 7350)$

$$
\begin{aligned}
& \text { Revenue }=\text { Price } \times A_{\text {mount }} \\
& =(20+5 x)(300-30 x) \\
& =6000-600 x+1500 x-150 x^{2} \\
& R=-150 x^{2}+900 x+6000 \\
& =-150\left(x^{2}-6 x\right)+6000 \quad \frac{-6}{2}=-3(-1)^{2}=7 \\
& =-150\left(x^{2}-6 x+9-9\right)+6000 \quad \rightarrow \text { When you set the price to } \\
& =-150\left(x^{2}-6 x+9\right)+1350+6000 \quad \begin{array}{l}
20+5(3)=1351 \\
\max +k \text { rev.to } \$ 7350
\end{array} \\
& =-150(x-3)^{2}+7350 \\
& \therefore \text { Vertex is }(3,7350) \\
& \text { price chemise }
\end{aligned}
$$

7. When a baseball is hit at a certain velocity and angle the height of the ball is given by the equation $h=-0.0032 x^{2}+x+3$, where h is the height of the ball in feet, and x is the horizontal distance from home plate in feet.
a. How high was the ball when it was hit? (3 ft)
b. How high is the ball when it is 2 ft away from home plate? (4.98 ft)
c. How far away from home plate does the ball land? (315.47 ft)
d. What is the maximum height reached by the baseball? (81.125 ft)
a)

$$
\begin{aligned}
& h=-0.032 x^{2}+x+3 \\
& h=3 f+ \\
& h=-0.0032(2)^{2}+2+3 \\
& \\
& =4.9872 f+
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. } 0=-0.032 x^{2}+x+3 \\
& \begin{aligned}
q & =-0.032 b=1 c=3 \\
x_{1,2} & =\frac{-1 \mp \sqrt{1^{2}-4(-0.02)(3}}{2(-0.032)}=\frac{-1 \mp \sqrt{1.0324}}{-0.0064}
\end{aligned} \\
& \begin{aligned}
q & =-0.032 b=1 c=3 \\
x_{1,2} & =\frac{-1 \mp \sqrt{1^{2}-4(-0.022)(3}}{2(-0.032)}=\frac{-1 \mp \sqrt{1.0324}}{-0.0064}
\end{aligned} \\
& \begin{array}{ll}
x_{1}=\frac{-1+1.0190}{-0.0004} & x_{2}=\frac{-1-1.0190}{-0.0064} \quad \therefore \quad \text { It lands } 315.47 f+ \\
x_{1}=-2.97 & x_{2}=315.47 \mathrm{ft}
\end{array} \\
& x_{1}=-2.97 \quad x_{2}=315.47 \mathrm{ft}
\end{aligned}
$$

b)
8. Forty metres of fencing are available to enclose a rectangular pen. The area, A square metres, enclosed is given by $A=$ $-\frac{1}{2} 0 x-x^{2}$, where the length of the pen is x metres.
e. What is the maximum area that can be enclosed? $\left(100 \mathrm{~m}^{2}\right)$
f. What are the dimensions of the pen with the maximum area? (10 m by 10 m)
g. What length produces a pen with an area greater than $90 \mathrm{~m}^{2}$? (between 6.9 m and 13.1 m)

$$
c .90=-w^{2}+20 w
$$

$$
w^{2}-20 w+90=0
$$

$$
\begin{aligned}
\text { Ares } & =\omega(20-\omega) \\
& =-\omega^{2}+20 \omega \\
& =-\left(\omega^{2}-20 \omega\right) \\
& =-\left(\omega^{2}-20 \omega+100-100\right) \\
& =-(\omega-10)^{2}+100
\end{aligned}
$$

$$
\begin{aligned}
& a=1 \quad b=-20 c=90 \\
& x_{1,2}=\frac{-(-20) \mp \sqrt{(-20)^{2}-4(1)(90)}}{2(1)}=\frac{207 \sqrt{40}}{2} \quad \text { Vertex }(10,100) \\
& x_{1}=\frac{20+63246}{2} \cdot 13.2
\end{aligned} \quad \begin{gathered}
\text { wide } x_{2}=\frac{20-6.3246}{2} \div 68 \quad \therefore 6.8 \mathrm{~m} \text { and } 13.2 \mathrm{~m}
\end{gathered}
$$

9. A company manufactures and sells designer T-shirts. The profit, P dollars, for selling a certain style of T-shirt is projected to be $P=-20 x^{2}+1000 x-6720$, where x dollars is the selling price of one T-shirt.
a. What are the break even points? ($\$ 8$ and $\$ 42$) When $P=?$
b. What selling price gives the maximum profit? What is the maximum profit? $(\$ 25, \$ 5780)$

!The max ores is $100 \mathrm{~m}^{2}$ when the cimensitans ore 10 m by 10 m

$$
\begin{array}{rl}
1 \text { b. } P & P=-20\left(x^{2}-50 x\right)-6720^{\left.-504)^{(-25}\right)}=625 \\
& =-20\left(x^{2}-50 x+625-625\right)-6720 \\
& =-20\left(x^{2}-50 x+625\right)+12500-6720 \\
& =-20(x-27)^{2}+5780 \\
& \text { Vertex is }(25,5780)
\end{array}
$$

\therefore The breakeven
points are $\$ 8$ end $\$ 42$.
\qquad
Day 9: The Quadratic Equation APPLICATIONS
Chapter 6: Quadratic Equations
10. A life guard marks a rectangular swimming area at a beach with a 200 m rope. The width of the swimming area is x metres. The area enclosed is A square metres, where $A=x(200-2 x)$. What is the greatest area that can be enclosed? ($5000 \mathrm{~m}^{2}$)

$$
200=2 \omega+L \quad A r=\omega(200-2 \omega)
$$

$$
\begin{aligned}
& =-2 w^{2}+200 w \\
& =-2\left(w^{2}-100 w\right)(-50)^{2}=2500 \\
& =-2\left(w^{2}-100 w+2500-2500\right) \\
& =-2\left(\omega^{2}-100 w+7500\right)+5000 \\
& =-2(w-50)^{2}+5000
\end{aligned}
$$

Vertex is $(50,5000)$ i therefor, the max ares is $500 \mathrm{~m}^{2}$ with sonant loom dimensions.
11. A company manufactures and sells novelty caps. The profit, P dollars, for selling a certain style of cap at t dollars each is projected to be $P=-15 t^{2}+90 t+675$. What selling price is expected to give a maximum profit? What is the maximum profit? $(\$ 3, \$ 810)$

$$
\begin{aligned}
P & =-15\left(t^{2}-6 t\right)+675-6 / 2=-3 \\
& =-15\left(t^{2}-6 t+9-9\right)+675 \\
& =-15\left(t^{2}-6 t+9\right)+135+675 \\
& =-15(t-3)^{2}+810
\end{aligned}
$$

$V(3,8130) \therefore$ When the price is $\$ 3$, the max profit is $\$ 810$
12. A stone is thrown upward with an initial speed of $25 \mathrm{~m} / \mathrm{s}$. Its height, h metres, after t seconds is given by the equation h $h=-5 t^{2}+25 t$. For how long is the stone higher than 30 m ? (1 sec)

$$
\begin{aligned}
& 30=-5 t^{2}+25 t \\
& 0=-5 t^{2}+25 t-30 \\
& 0=-5\left(t^{2}-5 t+6\right) \\
& 0=-5(t-2)(t-3) \\
& t-2=0 \quad \begin{array}{l}
t=2 \\
t=2
\end{array} \quad \begin{aligned}
t=3
\end{aligned} \\
& \therefore \quad 3-2=1 \mathrm{sec} .
\end{aligned}
$$

