1. The town decides to build a rectangular fence around a playground. The playground without the fence measures 60 m by 40 m ; however after the building of the fence, the area gets doubled. The designers put the fence around the playground with a uniform distance. Calculate the distance between the playground and the fence. between the playground and fence.
Let x represent the diskince
$(60+2 x)(40+2 x)=4800$
$2400+120 x+80 x+4 x^{2}-4800=0$
$4 x^{2}+200 x-2400=0$
$x^{2}+50 x-600=0$
$(x+60 \quad x-10)=0$
$x=-60 \quad x=10$
d
inadmissible \therefore The distance was 10 m .

initial area $=2400$
dowsed area $=4800$
2. A factory is to be built on lot that measures 90 m by 70 m . A lawn of uniform width and with an area of $1300 \mathrm{~m}^{2}$ must surround the factory. What dimensions must the factory have? (Note that the lot is the factory plus the lawn). Initicel area $=(p 0)(70)=6300 \mathrm{~m}^{2}$

$$
\text { New area }=6300-1300=5000 \mathrm{~m}^{2}
$$

90
$(90-2 x)(70-2 x)=5000$
$6300-180 x-140 x+4 x^{2}-5000=0$
$4 x^{2}-320 x+1300=0$
$x^{2}-80 x+325=0$
$x=\frac{80 \pm \sqrt{(85)^{2}-4(1)(325}}{2(1)}=\frac{80 \pm \sqrt{5100}}{2}=\frac{50 \pm 71.41}{2}$
Let x represent
the lawn.
\therefore Dimesions of the factory: $L=90-2 x=81.9 \mathrm{~m}$ $\omega=70.2 x=61.4 \mathrm{~m}$.
3. George owns a business that sells parts for electronic game systems. The profit function for his business can be modelled by the equation: $P(x)=-0.5 x^{2}+8 x-24$, where x is the quantity sold, in thousands, and $P(x)$ is the profit in thousands of dollars.
a. How many parts must George sell in order for his business to break even? $\quad P(x)=0$ $-0.5 x^{2}+8 x-24=0$
$x^{2}-16 x+48=0$$\longrightarrow$ you may use the quadratic
$(x-12)(x-4)=0$
formula :!
$x=12$ or 4
$\therefore 4000$ or 12000 items must be sod for business to break even
b. How many parts must George sell in order for his business to make $\$ 7000$? $\quad P(x)=7$

$$
\begin{array}{ll}
-0.5 x^{2}+8 x-24=7 & x_{1}=(8+\sqrt{2})(000 \pm 9414 \\
-0.5 x^{2}+8 x-31=0 & x_{2}=(8-\sqrt{2})(1000) \doteq 6585 \\
x^{2}-16 x+62=0 & \therefore \text { George must sell } 9 \\
x=16 \pm \sqrt{(16)^{2}-4(0(62)} & \therefore \text { prats in order to }
\end{array}
$$

\therefore George must seel quilt or 6585

$$
\begin{aligned}
& \text { George must seel } \\
& \text { parts in order to mace } \$ 7000
\end{aligned}
$$

$$
=\frac{16 \pm \sqrt{8}}{2}=8 \pm \sqrt{2}
$$

4. A right triangle has a perimeter of 300 cm . Its hypotenuse is 130 cm . What are the lengths of the other sides?

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& x^{2}+(170-x)^{2}=130^{2} \\
& x^{2}+25900-340 x+x^{2}=16900 \\
& 2 x^{2}-340 x+12000=0 \\
& x^{2}-170 x+6000=0 \\
& (x-120) \quad(x-50)=0 \\
& x=120 \quad \text { or } x=50
\end{aligned}
$$

\therefore The lengths of the other sides are 120 cm and 50 cm .

Homework: p. 178 \#by, 7, 11-14 [complete day 3 worksheet fully]

