Day 6: Quadratic Formula

A rest is the value of the variable that makes an equation true. It is the same as the solution to an equation.

Recall that a quadratic equation is an equation of the form

$$ax^2+bx+c=0$$

If $y = 3x^2 - 6x + 11$, find the x value that makes y = 10.

3x2-6x+1=0 (we can not factor)

What happens if a quadratic equation cannot be factored?

use quadratic formula

to solve for oc.

$$x = -(-6) \pm \sqrt{(-6)^2 + (-3)(1)}$$

$$2(3)$$

$$=6\pm\sqrt{36-12}$$

$$=6\pm\sqrt{24}$$

Exact answers:

To determine x for a quadratic equation of the form $ax^2bxcc=0$ we can use the quadratic formula to find the roots:

$$x = -b \pm \sqrt{b^2 - 4ac}$$

You may for once, use a calculator!

^{***}Yes, it is ugly, but you must memorize this formula!***

Example 1 Use the quadratic formula to solve each quadratic equation. Where necessary, round to four decimal places.

a)
$$0 = 2x^2 + 9x + 6$$

 $a = 2$ $b = 9$ $c = 6$
 $x = -9 \pm \sqrt{9^2 - 4(2)(6)}$
 $= -9 \pm \sqrt{81 - 48}$

b) $4x^2 - 12x = -9$

Ar =12x+9=0

$$x_{1} = -9 + \sqrt{33}$$

$$x_{1} = -9 + \sqrt{33} = -0.8139$$

$$x_{2} = -9 - \sqrt{33} = -3.6861$$

G (which implies

perfect square

trinomial)

$$4x^2 - 12x+9 = (2x-3)^2$$

Example 2 Find the *x*-intercepts, the vertex, and the equation of the axis of symmetry of the quadratic relation $y = -3 + 8x - 5x^2$. Sketch the

sub y = 0 for x-ints,

$$-5x^2 + 8x - 3 = 0$$

 $a = -5$ $b = 8$ $c = -3$
 $x = -8 \pm \sqrt{64 - 4(-5)(-3)}$
 $= -8 \pm \sqrt{34}$
 $= -8 \pm 2$

$$x_{1} = -8 + 2 = -6 = 0.6$$

$$x_{2} = 1$$

$$x_{V} = \frac{x_{1} + 3x_{2}}{2} = \frac{0.6 + 1}{2} = 0.8$$

 $9v = -3+8(0.8)-5(0.8)^2 = 0.2$

:. verex (0.8,0.2)

0.2

Homework: Page 300 #4ce, 5ace, 6,7,9ce, 10,11