\qquad
\qquad

$$
\text { Graphing } y=b^{x}, b>1
$$

Complete the following tables of values and use them to graph and label each function.

x	$y=2^{x}$
-3	$2^{-3} \frac{1}{8}$
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	2
2	4
3	8

x	$y=3^{x}$
-3	$\frac{1}{27}$
-2	$\frac{1}{9}$
-1	$\frac{1}{3}$
0	1
1	3
2	9
3	27

a) What are the y-intercepts for both graphs?
y-int is 1.
b) What are the domains and ranges for both graphs?
$D=\{x \in \mathbb{R}\} \quad R=\{y \in \mathbb{R} \mid y>0\}$
c) What do you notice as the values of x get smaller?

Summary

If f is a function defined by $f(x)=b^{x}$, where $b>1$:
$f(x)$ is increasing, $f(0)=1, f(1)=b$, and the equation of the horizontal asymptote is $y=0$.
\qquad
\qquad

$$
\text { Graphing } y=b^{x}, 0<b<1
$$

Complete the following tables of values and use them to graph and label each function.

x	$y=\left(\frac{1}{2}\right)^{x}$
-3	
-2	
-1	
0	
1	
2	
3	

x	$y=\left(\frac{1}{3}\right)^{x}$
-3	
-2	
-1	
0	
1	
2	
3	

a) What are the y-intercepts for both graphs?
y-int is 1
b) What are the domains and ranges for both graphs?
$D=\{x \in \mathbb{R}\}$
$R=\{y \in \mathbb{R} \mid y>0\}$
c) What do you notice as the values of \times get larger?
y approaches 0 . [horizontal asymptate $y=0$. y

Summary

If f is a function defined by $f(x)=b^{x}$, where $0<b<1$:
$f(x)$ is decreasing, $f(0)=1, f(1)=b, f(-1)=\frac{1}{b}$ and the equation of the horizontal asymptote is $y=0$.

Name: \qquad
Date: \qquad
Determining the Equation of an Exponential Function $y=b^{x}$
From Harcourt Mathematics 12

1. Determine the equation of the functions graphed below.

Hints: They are all of the form $y=b^{x}$.
Determine whether the graph is increasing or decreasing to determine whether $b>1$ or $0<b<1$.
Determine the value of y when $x=1$ or $x=-1$.
a)

c)

$$
y=\left(\frac{1}{5}\right)^{x}
$$

decreasing
$\left(1, \frac{1}{5}\right)$
$(-1,5)$
b)

d)

Homework: p. 243 \#1,2 p. 239 \#1f,5f,6d,7d,8,9f, 10f,11ab, 12a-d

