Example 1:
a) Find the inverse of a $f(x)=x^{2}-1$. \sim
b) Graph $f(x)$ and its inverse.
c) Is the inverse of $f(x)$ a function?
d) Determine the domain and range of $f(x)$ and its inverse.
a) $f(x)=x^{2}-1$

$$
y=x^{2}-1
$$

$$
x=y^{2}-1
$$

$$
x+1=y^{2}
$$

$$
y= \pm \sqrt{x+1}
$$

$$
f^{-1}(x)= \pm \sqrt{x+1}
$$

d) $P_{f}=\{x \in \mathbb{R}\}$
$R_{f}=\{y \in \mathbb{R} \mid y \geqslant-1\}$
$D_{f^{-1}}=\{x \in \mathbb{R} \mid x \geqslant-1\}$

$$
R_{f^{-1}}=\{y \in \mathbb{R}\}
$$

Example 2: The graph of $f(x)$ and its inverse are shown below. Find an equation for $f(x)$ and its inverse.

$$
\begin{aligned}
& \text { a) } f(x)=x^{2}-4 \\
& y=x^{2}-4 \\
& x=y^{2}-4 \\
& x+4=y^{2} \\
& y= \pm \sqrt{x+4} \\
& f^{-1}(x)= \pm \sqrt{x+4}
\end{aligned}
$$

Example 3: Restrict the domain of each function so its inverse is also a function. Graph the function and its inverse.
a) $f(x)=x^{2}-1$
G restrict it to the regin kaif or left half of parabola

$$
\begin{aligned}
& y=x^{2}-3, x \geqslant 0 \\
& f^{-1}(x)=\sqrt{x+1}
\end{aligned} \left\lvert\, \begin{array}{ll}
\text { R } \quad y=x^{2}-1, x \leq 0 \\
f^{-1}(x)=-\sqrt{x+1}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { b) } f(x)=2 x^{2}+3 \\
& y=2 x^{2}+3, \quad x \geqslant 0 \\
& x=2 y^{2}+3 \\
& x-3=2 y^{2} \\
& \frac{x-3}{2}=y^{2} \\
& \pm \sqrt{x-\frac{3}{2}}=y ? \sqrt{\frac{x-3}{2}}
\end{aligned}
$$

(will restrict the domain to left half of the parabola)

$$
\text { c) } f(x)=(x-1)^{2}
$$

$$
\begin{aligned}
& y=(x-1)^{2} \quad, \quad x \leq 1 \\
& x=(y-1)^{2} \\
& \pm \sqrt{x}=y-1 \\
& \pm \sqrt{x}+1=y \Rightarrow y=-\sqrt{x}+1
\end{aligned}
$$

(since y has the ≤ 18.

$$
\text { e) } f(x)=(x-4)(x+2)
$$

$$
\text { zeros: } 4,-2
$$

$$
x_{v}=\frac{4+(-2)}{2}=1 \text { sub in }
$$

$$
y_{v}=(-3)(3)=-9 \quad y=(x-1)^{2}-9
$$

inverse: $\quad x=(y-1)^{2}-9$

$$
x+9=(y-1)^{2}
$$

$$
\begin{aligned}
& \pm \sqrt{x+9}=y-1 \\
& 1+\sqrt{x+9}+1=y
\end{aligned}
$$

f) $f(x)=x^{2}-4 x+3 \rightarrow$ Complete the square First

$$
\begin{aligned}
y & =\left(x^{2}-4 x+4-4\right)+3 \\
& =\left(x^{2}-4 x+4\right)-4+3=(x-2)^{2}-1
\end{aligned}
$$

Inverse: $\quad x=(y-2)^{2}-1$

$$
\begin{gathered}
x+1=(y-2)^{2} \\
\pm \sqrt{x+1}=y-2 \\
\pm \sqrt{x+1}+2=y
\end{gathered}
$$

$$
\begin{aligned}
& \text { d) } f(x)=(x+2)^{2}+1, \quad x \geqslant-2 \\
& y=(x+2)^{2}+1 \\
& x=(y+2)^{2}-1 \\
& x-1=(y+2)^{2} \\
& \pm \sqrt{x-1}=y+2 \\
& +\sqrt{x-1}-2=y \\
& x \geqslant \frac{-2}{\left(R_{\text {ighthait }}\right)} \\
& \text { P positive only }
\end{aligned}
$$

