Recall $y=a(x-h)^{2}+k \rightarrow$ Vertex Form
$y=a x^{2}+b x+c \rightarrow$ Standard Form
Consider $y=2(x-2)^{2}-2$

1) How many x-intercepts do you expect? How do you know? State the transformations and sketch the graph.
$2 x$-intercepts (ask have different signs)

Transformations: vertically stretched by a factor of 2

- horizontal shift 2 units to the right vertices shift 2 units down.

2) Calculate the x - and y-intercepts for the quadratic relation above.

$$
\begin{aligned}
& x \text {-int: set } y=0 \\
& 0=2(x-2)^{2}-2 \\
& \frac{2}{2}=\frac{2}{2}(x-2)^{2} \\
& (x-2)^{2}=1 \\
& x-2= \pm \sqrt{1} \\
& x-2= \pm 1
\end{aligned}
$$

$$
\begin{gathered}
x-2=1 \\
x=3
\end{gathered}
$$

$$
x-2=-1
$$

$$
x=1
$$

3) Convert the above relation into standard form. What information does standard form provide us?

$$
\begin{aligned}
y & =2(x-2)^{2}-2 \\
& =2\left(x^{2}-4 x+4\right)^{-2} \\
& =2 x^{2}-8 x+8-2 \\
& =2 x^{2}-8 x+6
\end{aligned}
$$

4) Factor the quadratic relation from \#3. What information does this form provide us?

$$
\begin{aligned}
& y=2 x^{2}-8 x+6 \\
& =2\left(x^{2}-4 x+3\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2(x-4 x \\
& =2(x-3)(x-1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { the zeros } \\
& (x \text {-intercepts) }
\end{aligned}
$$

Recall: A quadratic relation is said to be in factored form if its algebraic expression appears in the form

$$
y=a(x-r)(x-5)
$$

For a quadratic in factored form, $y=a(x-\gamma)(x-5)$, the zeros/roots/x-intercepts are $x=\gamma$ and $x=5$.

Ex 1: Solve for the x-intercepts for the quadratic relation $y=2(x-1)(x-3)$.

$x=1,3$

Ex 2: Solve for the x -intercepts for the quadratic relation $y=(2 x-5)(x+1)$

$$
x=5 / 2,-1
$$

Ex 3: Solve for the x-intercepts for the quadratic relation $y=3 x^{2}-5 x-2$

$$
=3 x(x-2) t
$$

$$
\begin{aligned}
& =3 x \\
& =(3 x+1)(x-2)
\end{aligned}
$$

$$
\therefore x=-1 / 3,2
$$

Questions for the day:

1. If $x=5$ and $x=11$ are the zeros (x-intercepts), what would be the equation of axis of symmetry? How would it be related to the vertex?
$x=\frac{5+11}{2}=\frac{16}{2}=8$ coosld be the axis of of symmetry. (It is the
2. How can we find the optimal ($\mathrm{max} / \mathrm{min}$) from axis of symmetry?

Sub x_{v} in $y=a(x-r)(x-s)$ to find y_{V}
Seatwork: p. 192 \#4, 8, 10, 11, 13

$$
\begin{aligned}
& y=3 x^{2}-5 x-2 \\
& =3 x^{2}-6 x+x-2 \\
& \begin{array}{c|c|c}
M & A & N \\
\hline-6 & -5 & -6,1
\end{array}
\end{aligned}
$$

