\qquad

Reviewing the Exponent Laws

a^{m} is a power in exponential form where: \boldsymbol{m} is the exponent $\quad \boldsymbol{a}$ is the base $\quad \boldsymbol{m}$ is a power of base a In expanded form, $\mathrm{a}^{\mathrm{m}}=\mathrm{axaxaxa} \ldots$ (multiply \boldsymbol{a} by itself as many times as given by the value of m , exponent)

To simplify an expression means to leave the final answer in exponential form.]

RULE		PLE	PRACTICE
1) MULTIPLICATION of POWERS keep the base, add the exponents.	$a^{2} \times a^{5}=a^{7}$		$\begin{gathered} \text { Simplify }\left(2 a^{2} b^{3}\right)\left(-3 a^{4} b^{6}\right) \\ =-6 a^{6} b^{9} \end{gathered}$
2) DIVISION of POWERS keep the base, subtract the exponents.	$a^{5} \div a^{2}=a^{3}$		$\begin{aligned} & \text { Simplify } \frac{27 x^{9}}{3 x^{-6}} \\ & =9 x^{9-(-6)}=9 x^{15} \end{aligned}$
3) POWER of a POWER keep the base, multiply the exponents.	$\left(a^{2}\right)^{5}=a^{10}$		$\begin{aligned} & \text { Simplify }\left(a^{-2}\right)^{-3} \times 3 a^{6} \\ & =a^{6}\left(3 a^{6}\right) \\ & =3 a^{12} \end{aligned}$
4) POWER of a PRODUCT distribute the exponent over the brackets to each term inside. Then apply rule \#3	$\begin{aligned} \left(2 a^{3} b^{2}\right)^{4} & =\left(2^{1}\right)^{4}\left(a^{3}\right)^{4}\left(b^{2}\right)^{4} \\ & =\left(2^{1 \times 4}\right)\left(a^{3 \times 4}\right)\left(b^{2 \times 4}\right) \\ & =2^{4} a^{12} b^{8} \\ & =16 a^{12} b^{8} \end{aligned}$		Simplify $\left(-2 a^{2} b^{5}\right)^{3}$ $=-8 a^{6} b^{15}$
5) POWER of a QUOTIENT same as rule \#4	$\begin{aligned} \left(\frac{a^{3}}{b^{2}}\right)^{3} & =\frac{\left(a^{3}\right)^{3}}{\left(b^{2}\right)^{3}} \\ & =\frac{a^{3 \times 3}}{b^{2 \times 3}} \\ & =\frac{a^{9}}{b^{6}} \end{aligned}$		Simplify $\left(\frac{12 x^{5}}{4 y^{3}}\right)^{3}$ $=\left(3 \frac{x^{5}}{y^{3}}\right)^{3}=27 \frac{x^{15}}{y^{9}}$
6) NEGATIVE EXPONENT reciprocate the base, switch the sign of the exponent	$a^{-2}=\frac{1}{a^{2}}$	$\begin{aligned} \left(\frac{2}{3}\right)^{-2} & =\left(\frac{3}{2}\right)^{2} \\ & =9 / 4 \end{aligned}$	Simplify $\left(\frac{2 x^{3}}{3 y^{2}}\right)^{-3}$ $=\left(\frac{3 y^{2}}{2 x^{3}}\right)^{3}=\frac{27 y^{6}}{8 x^{9}}$
7) ZERO EXPONENT depending on the sign of the base, it is either equal to 1 or -1	$x^{0}=1$	$-x^{0}=-1$	Simplify - $\left(14 a^{3} b^{-4}\right)^{0}$

Ex1. Use the exponent laws to simplify the following. (Remember more than one law can be used to simplify an expression completely.)
a. $\left(4 a b^{4}\right)\left(-5 a^{3} b^{2}\right)$
b. $\left(12 b^{2}\right)\left(8 b^{-4}\right) \div\left(6 b^{-19}\right)$

$$
=-20 a^{4} b^{6}
$$

$$
=\frac{96 b^{-2}}{6 b^{-10}}=16 b^{8}
$$

c. $\left(-\frac{1}{2} c^{2} d^{3}\right)^{4}$

$$
\begin{aligned}
& \text { d. } \frac{\left(t^{7}\right)^{3}(t)}{t^{16}} \\
&=\frac{t^{21} t}{t^{16}}=\frac{t^{22}}{t^{16}} \\
&=t^{6}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(-\frac{1}{2}\right)^{4} c^{8} d^{12} \\
& =\frac{1}{16} c^{8} d^{12}
\end{aligned}
$$

Ex. Use the laws of exponents to simplify the following:
a. $\frac{\left(-m^{2} n^{3}\right)^{2}\left(m n^{-4}\right)}{\left(m n^{3}\right)^{4}}$
b. $\frac{x\left(x^{4 a+1}\right)}{x^{a+3}}=\frac{x^{4 a+2}}{x^{a+3}}$

$$
=\frac{m^{4} n^{6} m n^{-4}}{m^{4} n^{12}}
$$

$$
=\frac{m^{5} n^{+^{2}}}{m^{4} n^{12}}=m n^{-10}=\frac{m}{n^{10}}
$$

$$
\begin{aligned}
=\frac{1}{3^{-1}}=1 \div \frac{1}{3} & =\frac{\frac{1}{2}+\frac{1}{16}}{\frac{1}{4}+\frac{1}{4}}=\frac{\frac{8}{16}+\frac{1}{16}}{\frac{2}{4}} \\
=3 & =\frac{9}{16} \div \frac{2}{4}=\frac{9}{16} \times \frac{4}{2}=\frac{36}{32}=\frac{9}{8}
\end{aligned}
$$

