MCR3U1

Day 1: Reviewing the Exponent Laws

Date:_

Chapter 4: Exponential Functions

Reviewing the Exponent Laws

 a^{m} is a power in exponential form where: *m* is the exponent *a* is the base *m* is a power of base *a* In expanded form, $a^{m} = a \ge a \ge a \ge a$... (multiply *a* by itself as many times as given by the value of m, exponent) To simplify an expression means to leave the final answer in exponential form.]

RULE	EXAMPLE		PRACTICE
1) MULTIPLICATION of POWERS			Simplify $(2a^2b^3)(-3a^4b^6)$
keep the base, add the exponents.	$a^2 \times a$	$a^{5} = a^{7}$	6,9
			=-626
			27.49
2) DIVISION OF POWERS			Simplify $\frac{27x^2}{2x=6}$
keep the base, subtract the exponents.			5% -
	$a^5 \div a$	$a^{2} = a^{3}$	9-(-6) 15
			$= 9 \times = 9 \times$
3) POWER of a POWER			Simplify $(a^{-2})^{-3} \times 3a^6$
keen the base multiply the exponents			
Reep the buse, multiply the experients.	$(a^2)^5$	$= a^{10}$	$= 2^{6}(3a^{6})$
			- 4 (12-
	(- <u>)-</u>)-(- (-	1.4 4 2.4 4. 2.4	= 3a
4) POWER of a PRODUCT	$(2a^{3}b^{2})^{4} = (2^{1})^{4}(a^{3})^{4}(b^{2})^{4}$		Simplify $(-2a^2b^3)^3$
distribute the exponent over the	$= (2^{1\times4})(a^{3\times4})(b^{2\times4})$		6.15
apply rule #3	$=2^4a^{12}b^8$		=-8a°b'
	$= 16a^{12}b^8$		
5) POWER of a QUOTIENT	$(a^3)^3$ $(a^3)^3$		$(12x^5)_3$
same as rule #4	$\left(\frac{b^2}{b^2}\right) = \frac{b^2}{(b^2)^3}$		Simplify $\left(\frac{4y^3}{4y^3}\right)$
	a ^{3×3}		
	$=\frac{a}{b^{2\times 3}}$		- (3 x 3 3 77 - 15
		a ⁹	$\left(\begin{array}{c} \overline{y_3} \right) = 21 \frac{1}{2}$
	=	$=\frac{1}{b^6}$	27
6) NEGATIVE EXPONENT	·····		Simplify $\left(\frac{2x^3}{2}\right)^{-3}$
reciprocate the base, switch the sign of		$(2)^{-2}$ $(2)^{2}$	3y2
the exponent	$a^{-2} - 1$	$\left(\frac{2}{2}\right) = \left(\frac{3}{2}\right)$	(2)2 3 22.16
	$u^{-\frac{1}{a^2}}$	= 9/4	= (29) = 279
			223 82
			[
7) ZERO EXPONENT			Simplify $-(14a^3b^{-4})^0$
depending on the sign of the base, it is	$x^{0} = 1$	$-x^{0} = -1$	
either equal to 1 or -1			

1

MCR3U1

Day 1: Reviewing the Exponent Laws

Date:_____ Chapter 4: Exponential Functions

b. $(12b^2)(8b^{-4}) \div (6b^{-10})^{-10}$

d. $\frac{(t^7)^3(t)}{t^{16}}$

 $=\frac{96b^2}{6b^{-10}}=16b^8$

 $= \frac{t^{21}t}{t^{16}} = \frac{t^{22}}{t^{16}}$

= +⁶

Ex1. Use the exponent laws to simplify the following. (Remember more than one law can be used to simplify an expression completely.)

a. $(4ab^4)(-5a^3b^2)$

 $= -20a^{4}b^{6}$

c.
$$(-\frac{1}{2}c^2d^3)^4$$

$$= \left(-\frac{1}{2}\right)^{4} c^{8} d^{12}$$
$$= \frac{1}{16} c^{8} d^{12}$$

Ex2. Use the laws of exponents to simplify the following:

$$a \cdot \frac{(-m^{2}n^{3})^{2}(mn^{-4})}{(mn^{3})^{4}} \qquad b \cdot \frac{x(x^{4a+1})}{x^{a+3}} = \frac{x^{4a+2}}{x^{a+3}}$$

$$= \frac{m^{4}n^{6}mn^{-4}}{m^{4}n^{12}} \qquad = \frac{x^{4a+2}}{x^{a+3}} = \frac{x^{4a+2}}{x^{a+4}} = \frac{x^{4a+2}}{x^{$$