Expand and simplify OR Factor

You need to have these two skills to be prepared for the next section.

1. $(x+1)(x-4)$	2. $(x+3)(x+2)$	3. $(x-1)(x-5)$	4. $(2x+1)(3x-2)$
5. $(3x-1)(2x-3)$	6. $(x+5)(4x-1)$	7. $(2x+5)(2x-5)$	8. $(2x-5)^2$
9. $(x-1)^2$	10. $(3x+2)^2$	11. $(2x+7)(x-2)+(3x+2)$	12. $(5x-2)(5x+2)-(x-3)$
13. $4x^5 - 10x^2 + 7x$	14. $16x^3 - 8x^2$	15 . $4x^2 - 9$	16 . $2x^2 - 18$
17. $25x^2 - 30x + 9$	18 . $2x^2 - 12x + 18$	19. $x^2 - 2x - 35$	20 . $x^2 + 7x + 12$
21. $x^2 - 17x + 16$	$22.2x^2 + 13x - 6$	$23.12x^2 + 13x + 3$	24 .15 x^2 -13 x + 2
21. x -17x +10	22. 2x 4 13x 0	20.124 1134 13	1,15% 15% 1
$25.40x^2 + 47x + 12$	$26.12x^2 + 59x - 5$	27 (Am. 7)(Am. 17) + (2m.	28. $(2x+5)(4x-1)-(2x+3)$
25. 40x + 47x + 12	20.12x +39x -3	27. $(4x-7)(4x+7)+(2x+3)$	LO. (2x + 5)(4x - 1) - (2x + 5

<u>ANSWERS</u>

Use the answers to check your work. If you get one incorrect, go back and find that mistake!

1) $x^2 - 3x - 4$	2) $x^2 + 5x + 6$	3) $x^2 - 6x + 5$	4) $6x^2 - x - 2$
5) $6x^2 - 11x + 3$	6) $4x^2 + 19x - 5$	7) $4x^2 - 25$	8) $4x^2 - 20x + 25$
9) $x^2 - 2x + 1$	10) $9x^2 + 12x + 4$	11) $11x^2 + 15x - 10$	12) $24x^2 + 6x - 13$
13) $x(4x^4 - 10x + 7)$	14) $8x^2(2x-1)$	15) $(2x-3)(2x+3)$	16) $2(x-3)(x+3)$
17) $(5x-3)^2$	18) $2(x-3)^2$	19) $(x-7)(x+5)$	20) $(x+3)(x+4)$
21) $(x-16)(x-1)$	22) DNF	23) $(4x+3)(3x+1)$	24) $(3x-2)(5x-1)$
25) $(8x+3)(5x+4)$	26) $(12x-1)(x+5)$	27) $20x^2 + 20x - 24$	28) $4x^2 + 6x - 14$

Task 1: Investigating How to Solve by Graphing and Factoring

- Use the DESMOS to graph the parabola. Just provide a sketch on the paper, showing the zeros.
- Use the graph to determine the zeros.
- Factor the equation according to the type of expression (common, simple, tricky, difference of squares).

Standard Equation	Graph	Zeros/Solutions/ X-Intercepts	Factored Equation
$y = x^2 - 8x + 12$	-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9		
y = x ² ~ 49	-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9		
$y = x^2 + 5x$	-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9		
$y = 2x^2 + 5x - 3$	-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9		

What is the relationship between the zeros/solutions/x-intercepts and the factors?

Hint:	if the factor was $(x-6)$, what would the corresponding zero be?	
	if the factor was $(x + 4)$, what would the corresponding zero be?	Marrie Marrie (Marrie Marrie André A
	if the factor was x, what would the corresponding zero be?	
	if the factor was $(2x-3)$, what would the corresponding zero be?	Name of the state

Day 1: Factored Form

We have already seen two different forms of the equation of a quadratic relation	We have alread	v seen two	different forms	of the equation	of a	quadratic relation:
--	----------------	------------	-----------------	-----------------	------	---------------------

1._____

2. _____

We will now investigate the third form called: _____

$$y = a (x - r)(x - s)$$

Graph the following quadratic relation using a table of values:

$$y = 2 (x + 1)(x - 3)$$

Х	у
-3	
-2	
-1	
0	
1	
2	
3	
4	

Locate the x-intercepts. What do you notice about the x-intercepts and the equation of the quadratic relation?

Why is this true?

To solve for x-intercepts, we set _____ and solve!

If ab = 0 , then _____ If (a+b) (c+d) = 0 , then ____

A quadratic equation in the form y = a(x - r)(x - s) gives us the x-intercepts.

The x-intercepts are also known as: ____

1. State the x-intercepts of each of the following:

a)
$$y = -4 (x-2)(x+6)$$

a)
$$y = -4(x-2)(x+6)$$
 b) $y = 2(x+3)(x-8)$ c) $y = 3x(2x-1)$

c)
$$y = 3 \times (2 \times -1)$$

2. Graph the following quadratic relation:

a)
$$y = \frac{1}{3}(x-1)(x+5)$$

b) $y = -4 \times (x + 2)$

