Completing the Square to Solve Word Problems

1. A rectangular field is to be enclosed on one side by a barn and on the other three sides by 400 m of fencing. Determine the dimensions of the field if the area is to be a maximum.

$$
\begin{aligned}
A= & L \cdot \omega \\
= & (400-2 \omega)(\omega) \\
= & 400 \omega-2 \omega^{2} \\
= & -2 \omega^{2}+400 \omega \\
= & -2\left(\omega^{2}-200 \omega+10000\right)^{-10000} \\
= & -2(\omega-100)^{2}+200,000 \\
& \quad L=400-2 \omega=200 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& 2 w+L=400 \\
& L=400-2 w
\end{aligned}
$$

2. Find two integers whose difference is 12 and whose product is a minimum.

$$
\begin{aligned}
& p=(x)(x-12) \\
&=x^{2}-12 x \\
&=x^{2}-12 x+36-36 \\
&=(x-6)^{2}-36 \\
& \therefore x=6 \quad p=-36
\end{aligned}
$$

Let x and $x-12$ represent the integers
$\therefore 6$ and -6 are the integers.

$$
\begin{aligned}
& x-12 \\
& =6-12=-6
\end{aligned}
$$

\qquad

Revenue Problems:
3. A motel has 30 rooms. The owner decides to raise the price of each room from the current price of $\$ 40$. Every $\$ 2$ increase in price results in one less room rented out. What price of each room would maximize revenue?

Rooms	Price	R
30	40	1200
29	42	1218
28	44	1232
27	46	1242
26	48	1248

$$
\begin{aligned}
R & =(30-x)(40+2 x) \\
& =1200+20 x-2 x^{2} \\
& =-2 x^{2}+20 x+1200 \\
& =-2\left(x^{2}-10 x\right)+1200 \\
& =-2\left(x^{2}-10 x+25-25\right)+1200 \\
& =-2(x-5)^{2}+1250 \\
& \therefore(5,1250) \therefore P=50
\end{aligned}
$$

chill Maximize
4. Calculators are sold to students for 20 dollars each. Three hundred students are willing to buy them at that price. For every 5 dollar increase in price, there are 30 fewer students willing to buy the calculator. What selling price will produce the maximum revenue and what will the maximum revenue be?

$$
R=(20+5 x)(300-30 x)
$$

Complete the square

$$
\begin{aligned}
& =6000-600 x+1500 x-150 x^{2} \\
& =-150 x^{2}+900 x+600 \\
& =-150\left(x^{2}-6 x+9-9\right)+600 \\
& =-150(x-3)^{2}+1950
\end{aligned}
$$

Homework: p. 271 \#16, 23, 24 \& p. 313 \#17c

