Day 10: Vertex- Completing the Square (B)

Unit 5 – Quadratic Relations

Complating the Saliare Vertex & Loves

	Example #1	Example #2
Steps	$y = -2x^2 - 4x + 3$	$y = -5x^2 + 20x - 16$
Common factor the coefficient of the x^2 term from the first two terms. Do not factor out the x.	$y = -2(x^{2}+2x)+3$	$y = -5(x^2 - 4x) - 16$
Divide the coefficient of x by 2, then square it.	$\left(\frac{2}{2}\right)^2 = 1$	$\left(\frac{-4}{z}\right)^2 = 4$
Add and subtract that value inside the bracket of the equation two steps above.	y = -2(x + 2x + 1 - 1) + 3 (-2x-1)= 2	y=-5(x ² -4x+4-4)-16
Move the last term in the bracket to the outside of the bracket and multiply it with the number in front of the bracket. Add the two constants together.	(-2)(x-1)=2 $y=-2(x^{2}+2x+1)+2+3$	$y = -5(x^{2}-4(x+4))+2 v-16$ (-5)(-4)= 20
Factor the perfect square trinomial inside the bracket.	y=-2(X+1)2+5	$y = -5(x-2)^{2} + 4$

Day 10: Vertex- Completing the Square (B)

, j

Unit 5 – Quadratic Relations

14 U.T

Steps	Example #5 $y = -3x^2 - 6x$	Example #6 $y = -2x^2 + 8x$
Common factor the coefficient of the x^2 term from the first two terms. Do not factor out the x.	$y = -3(x^2 + 25)$	$y = -2(x^2-4x)$
Divide the coefficient of x by 2, then square it.	$\left(\frac{2}{2}\right)^2 = 1$	$\left(\frac{-4}{2}\right)^2 = 4$
Add and subtract that value inside the bracket of the equation two steps above.	$y = -3(x^2 + 2x + 1 - 1)$	$y = -2(x^2 - 4x + 4 - 4)$
Move the last term in the bracket to the outside of the bracket and multiply it with the number in front of the bracket. Add the two constants together.	1	$y = -z (x^2 - 4x + 4) + 8$
Factor the perfect square trinomial inside the bracket.	$y = -3(x+1)^2 + 3$	$y = -2(x-2)^2 + 8$
· · · · · · · · · · · · · · · · · · ·		

Day 10: Vertex- Completing the Square (B)

Unit 5 – Quadratic Relations

When the "a" value in $y = ax^2 + bx + c$ is not 1, it must be factored first.

1. Convert
$$y = 2x^{2} + 12x - 1$$
 to the form $y = a(x - h)^{2} + k$ and state its vertex.

$$3 = 2(x^{2} + 6x) - 1 \qquad \left(\frac{6}{2}\right)^{2} = 9$$

$$= 2(x^{2} + 6x + 9 - 9) - 1$$

$$= 2(x^{2} + 6x + 9) - 18 - 1$$

$$= 2(x^{2} + 6x + 9) - 18 - 1$$

$$= 2(x^{2} + 6x + 9) - 18 - 1$$

$$= 2(x^{2} + 6x + 9) - 18 - 1$$

$$= 2(x^{2} + 6x + 9) - 18 - 1$$

2. Convert
$$y = -x^{2} + 4x + 5$$
 to the form $y = a(x - h)^{2} + k$ and state its vertex.
 $y^{2} = -(x^{2} - 4x) + 5$
 $(-\frac{4}{z})^{2} = 4$
 $= -(x^{2} - 4x + 4 - 4) + 5$
 $= -(x - 2)^{2} + 4 + 5$
 $= -(x - 2)^{2} + 6x + 7$ to the form $y = a(x - h)^{2} + k$ and state its vertex
 $y^{2} = -3(x^{2} - 2x) + 7$
 $(\frac{2}{2})^{2} = 1$
 $= -3(x^{2} - 2x + 1) - 1 + 7$
 $= -3(x^{2} - 2x + 1) + 3 + 7$
 $= -3(x - 1)^{2} + 10$

Homework: p. 271 #10de, 12, 14, 15