6.2: Parallel and Perpendicular Lines

Two lines can be said to be parallel or perpendicular.

Two lines are parallel if <u>they have the san</u>	ne slope.
Two lines are perpendicular if the Supes are	negative reciprocals
Investigation	(m, xm2 = -1) non harrantel
1) Go to the following site: https://www.geogebra.org/m/cSYbC98W	nonvergeo

BLUE & GREEN

RED.

- Which pair of lines are parallel? 2)
- 3) Which line is perpendicular to the others?
- 4) Complete the following table. Record the slopes of all three lines. Drag points A, B, C and/or D to change their slopes. Record the new slopes values. Repeat.

Example	Slope of the GreenLine	Slope of the Blue Line	Slope of the Red Line
1	-2/3	-2/3	3/2
2	-147/92	-147/92	92/147
3	104/219	104/219	-299/104
4	l or Y	1 or 1/1	-1 01 -1/1
5	0	O	undefined.

5) What do you notice about the slopes of the parallel lines?

They are the same

6) What do you notice about the slopes of perpendicular lines?

Mixm₂ = -1 for eg1 to 4 reciprocels of each other.

By comparing the slopes of the pairs of lines that were parallel, develop a rule for the slopes of parallel lines. If lines are parallel, then _______ slopes are same. but y-intercepts are different.

They are negative

By comparing the slopes of the pairs of lines that were perpendicular, develop a rule for the slopes of Perpendicular Lines..

If lines are perpendicular, then $M_1 \chi_m = -1$

)

PARALLEL Lines:	PERPENDICULAR Lines:
Have the same slope	 Meet at a right angle The slopes are
But differenty-intercepts	<u>NEGATIVE</u> RECIPROCAL of each
 Arealwaysaconstantdistance apart 	• If $m_1 = \frac{a}{b}$ then $m_2 = -\frac{b}{a}$

Ex. 1) Which of the following pairs of lines are parallel?

Ex. 2) Which of the following pairs of lines are perpendicular?

Ex. 3) Find an equation of a line that is parallel to
$$y - 5x + 1$$

and passes through the point(0, 0).
 $m = -5$ $b = 0$
 $y = 4x - 3$ and has the same y-intercept as $y = 5x - 9$.
 $m = 4$ $b = -9$
 $p = 4x - 2$ and has the same y-intercept of 5
 $y = \frac{1}{3}x - 2$ and passes through (0, 3).
 $m = \frac{1}{3}$
 $m_{\perp} = -3$
 $b = 3$ $(19 = -3)x + 3$
Ex. 7) Find an equation of a line that is perpendicular to $y = 4x + 2$ and has a y-intercept of 5
 $v = \frac{1}{3}x - 2$ and passes through (0, 3).
 $m = \frac{1}{3}$
 $m_{\perp} = -3$
 $b = 3$ $(19 = -3)x + 3$
Ex. 7) Find an equation of a line that is perpendicular to $y = 2x + 1$ and has the same y-intercept as $y = 6x - 2$.
 $M = -12$ $y = -\frac{1}{2}x - 2$
 $M = -\frac{1}{2}$ $y = -\frac{1}{2}x - 2$.
Seatwork: works yields

Mathematics 9	Page 1 of 2
Parallel & Perpendicular Lines	Date: 5 Dec. 2018

Using the points given below, determine the slope of the line passing through the points, and determine which pairs of lines are parallel and which pairs are perpendicular.

Notation: If AB is parallel to CD, we write AB || CD.

If AB is perpendicular to CD, we write $AB \perp CD$.

Mark

Recall: Slope: $m_{AB} = \frac{y_B - y_A}{x_B - x_A}$ OR $m = \frac{y_2 - y_1}{x_2 - x_1}$

(x_1, y_1)	(x_2, y_2)	Slope (Steps)	Slope
A (-4,7)	B (5,8)	$m_{AB} = \frac{8-7}{5-(-4)} = \frac{1}{5+4}$	$\frac{1}{9}$
C (-4,4)	D (-1,5)	$McD = \frac{5-4}{-1+4} = \frac{1}{3}$	<u> </u> <u> </u> <u> </u>
E (1,10)	F (2,7)	$MPE = \frac{7 - 10}{z - 1} = \frac{-3}{1}$	$\frac{-3}{1}$
G (7,-4)	Н (10,2)	$MGH = \frac{2+4}{10-7} = \frac{6}{3}$	2
I (6,12)	J (9,9)	$mIJ = \frac{9-12}{9-6} = \frac{-3}{3} = -1$	- 1
K (2,1)	L (6,2)	$m K L = \frac{2 - 1}{6 - 24} = \frac{1}{24}$	1
M (-3,-3)	N (-2,-1)	$MMN = \frac{-1+3}{-2+3} = \frac{2}{1}$	2.
0 (-1,-4)	P (4,-6)	$moP = \frac{-6+4}{4+1} = \frac{-2}{5}$	-2 -5
Q (-8,6)	R (-4,10)	$mar = \frac{10-6}{4} = \frac{4}{4}$	١
S (-5,2)	T (0,0)	$MST = \frac{0-2}{5} = \frac{-2}{5}$	- <u>~</u> [5

From the table above, list any lines that are parallel or perpendicular. Use proper notation.

Parallel lines: $\overrightarrow{OP} | \overrightarrow{FT}, \overrightarrow{GH} | \overrightarrow{MN}$ Perpendicular lines: $\overrightarrow{OL} \overrightarrow{FF}, \overrightarrow{FT} \overrightarrow{DQP}$

-3

N-2-1-1

Mathematics 9 Parallel & Perpendicular Lines

- 1. State the equation of the line shown on the Cartesian Plane given: $y = \frac{3}{4}x - 2$
 - a) Draw 3 lines that are parallel to the given line having y-intercepts of -6, 0 and 4.
 - b) Label each of the lines you have drawn with their respective equations.
- 2. State the equation of the line shown on the Cartesian Plane given: $\underline{\gamma} = -\frac{3}{2} \times + \frac{4}{2}$
 - a) Draw 3 lines that are perpendicular to the given line having y-intercepts of -5, 0 and 2. mh = 2
 - b) Label each of the lines you have drawn with their respective equations.
- 3. Beside each of the lines below, give its slope. Hint: "x-int" in the questions below is short for "x-intercept". Work for these questions may be done on scrap paper.
 - The line y = -2x 1a)
 - -3/5 5/2 The line with *x*-int 5 and *y*-int 3 c) (5,0) (0,3)
 - The line with rise of 5 and run of 2 e)
 - The line through (-3,1) and (1,5)g)
 - The line with rise of -2 and run 3 i)
 - k) The line through (4,-4) and (2,-7) 3

In the space provided, list all pairs of lines from #3 above which are either parallel or perpendicular.

- Z

- 2

Parallel lines: <u>clld fllg</u>	Perpendicular lines:	atb ilk
Answers:		
$-2; \frac{1}{2}; -\frac{3}{5}; -\frac{3}{5}; \frac{5}{2}; 1; 1; \frac{2}{3}; -\frac{2}{3}; \frac{4}{3}; \frac{3}{2}; -\frac{1}{2}$	c d ; f g	;a⊥b;i⊥k

b) The line through (2,4) and (4,5)

d) The line parallel to $y = 7 - \frac{3}{5}x$

j) The line \perp to $y = -\frac{3}{4}x - 1$

1) The line with x-int -2 and y-int -1

f) The line y = x + 1

 $\frac{4}{4} = 1$ h) The line $y = \frac{2}{3}x + 5$