6.2: Parallel and Perpendicular Lines

Two lines can be said to be parallel orperpendicular.
Two lines are parallel if they have the same slope.
Two lines are perpendicular if the slopes are negative reciprocals of arch other. $\left(m_{1} \times m_{2}=-1\right)$ non harezantal Investigation nonverticd.

1) Go to the following site: https://www.geogebra.org/m/cSYbC98W
2) Which pair of lines are parallel? \qquad
3) Which line is perpendicular to the others? RED.
4) Complete the following table. Record the slopes of all three lines. Drag points A, B, C and/or D to change their slopes. Record the new slopes values. Repeat.

Example	Slope of the GreenLine	Slope of the Blue Line	Slope of the RedLine
1	$-2 / 3$	$-2 / 3$	$3 / 2$
2	$-147 / 92$	$-147 / 92$	$92 / 147$
3	$104 / 219$	$104 / 219$	$-299 / 104$
4	1 or $1 / 1$	1 or $1 / 1$	-10 or $-1 / 1$
5	0	0	undefined.

5) What do you notice about the slopes of the parallel lines?

They are the same
6) What do you notice about the slopes of perpendicular lines?

$$
m_{1} \times m_{2}=-1 \quad \text { for eg } 1 \text { to } 4
$$

They are negative reciprocals of each other.
By comparing the slopes of the pairs of lines that were parallel, develop a rule for the slopes of parallel lines.
If lines are parallel, then slopes are same but y-intercept are different.
By comparing the slopes of the pairs of lines that were perpendicular, develop a rule for the slopes of Perpendicular Lines..
If lines are perpendicular, then $\quad m_{1} \times m_{2}=-1$

SUMMARY

Ex. 1) Which of the following pairs of lines are parallel?
a) $y=2 x+3$ and $y=5 x+3$
b) $y=-7 x-9$ and $y=-7 x-11$

$$
m_{1}=2 \quad m_{2}=5
$$

They are different \Rightarrow Not parallel
c) $y=6 x+1$ and $y=-6 x+4$

$$
m_{1}=6 \quad m_{2}=-6
$$

d) $y=-3 x-2$ and $y=-3 x$

$$
m_{1}=-3 \quad m_{2}=-3
$$

\therefore They are same \Rightarrow PARALLEL

$$
m_{1}=-7 \quad m_{2}=-7
$$

\therefore They are same \Rightarrow PARALLEL

They are different \Rightarrow NOT PARABLE

- Meet at a right angle
- The slopes are NEGATIVE
RECIPROCAL of each other.
- If $m_{1}=\frac{a}{b}$ then $m_{2}=-\frac{b}{a}$

Using the points given below, determine the slope of the line passing through the points, and determine which pairs of lines are parallel and which pairs are perpendicular.

Notation: If $A B$ is parallel to $C D$, we write $A B \| C D$.
If $A B$ is perpendicular to $C D$, we write $A B \perp C D$.
Recall: Slope: $m_{A B}=\frac{y_{B}-y_{A}}{x_{B}-x_{A}} \quad$ OR $\quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

From the table above, list any lines that are parallel or perpendicular. Use proper notation.
Parallel lines: $\quad \overline{O P}\|\overline{S T}, \widehat{G H}\| \widehat{M N}$
Perpendicular lines: $\overline{C D}+\overline{E F} \overline{I J} \pm Q R$

1. State the equation of the line shown on the Cartesian Plane given: \qquad
a) Draw 3 lines that are parallel to the given line having y-intercepts of $-6,0$ and 4 .
b) Label each of the lines you have drawn with their respective equations.

2. State the equation of the line shown on the Cartesian Plane given: $\quad y=-\frac{3}{2} x+4$
a) Draw 3 lines that are perpendicular to the given line having y-intercepts of $-5,0$ and $2 . \quad m_{h}=\frac{2}{3}$
b) Label each of the lines you have drawn with their respective equations.
3. Beside each of the lines below, give its slope. Hint: " x-int" in the questions below is short for " x-intercept". Work for these questions may be done on scrap paper.

a) The line $y=-2 x-1$
-2
b) The line through $(2,4)$ and $(4,5)$
$\frac{1}{2}$
c) The line with x-int 5 and y-int 3 $(5,0) \quad(0,3)$
e) The line with rise of 5 and run of 2
g) The line through $(-3,1)$ and $(1,5)$
$-\frac{3}{5}$ $\frac{5}{2}$
d) The line parallel to $y=7-\frac{3}{5} x$
f) The line $y=x+1$
h) The line $y=\frac{2}{3} x+5$
i) The line with rise of -2 and run 3

j) The line \perp to $y=-\frac{3}{4} x-1$
k) The line through $(4,-4)$ and $(2,-7)$ \qquad 1) The line with x-int -2 and y-int -1

In the space provided, list all pairs of lines from \#3 above which are either parallel or perpendicular.

Parallel lines: $c\|d f\| g$
Perpendicular lines:

Answers:

$$
-2 ; \frac{1}{2} ;-\frac{3}{5} ;-\frac{3}{5} ; \frac{5}{2} ; 1 ; 1 ; \frac{2}{3} ;-\frac{2}{3} ; \frac{4}{3} ; \frac{3}{2} ;-\frac{1}{2} \quad \mathrm{c}\|\mathrm{~d} ; \mathrm{f}\| \mathrm{g} ; \mathrm{a} \perp \mathrm{~b} ; \mathrm{i} \perp \mathrm{k}
$$

