Warm-Up:

A. The height, h, in metres, of a golf ball t seconds after Billy Bob hits it with a club is described by $h = -5t^2 + 30t$. How long is the ball in the air?

$$0 = -5t^2 + 30t$$
 $6CF = -5t$
 $0 = -5t(t-6)$

B. The height, h, in metres, of a football t seconds after Billy Bob throws it off the roof of a building is described by $h = -5t^2 + 20t + 25$. How long is the ball in the air?

$$0 = -5t^{2} + 20t + 25$$

$$0 = -5(t^{2} - 4t - 5)$$

$$-5(t + 1)(t - 5)$$

C. The height, h, in metres, of a baseball t seconds after Billy Bob hits it with a bat is described by $h = -5t^2 + 18t + 1$. For how long is the ball in the air?

C

To find the zeros of $ax^2 + bx + c = 0$, you can use this Quadratic Formula:

Example B from above:

$$a = -5$$
 $b = +20$ $c = +25$

• substitute the values of a, b, and c into the formula (use brackets!)	$t = \frac{-(2.0 \pm \sqrt{(20)^2 - 4(-5)(25)}}{2(-5)}$
• use your calculator to determine the value under the square root sign	$t = \frac{(-10) \pm \sqrt{(-10)}}{(-10)}$
• take the square root (round to 1 decimal if required)	$t = \frac{(10)(\pm)(30)}{(-10)}$
• split the equation into 2 equations – one with the '+' and one with the '-'	$t = \frac{(-10) + (30)}{(-10)}$ or $t = \frac{(-10) - (30)}{(-10)}$
• calculate the numerators	$t = \frac{(10)}{(-10)}$ or $t = \frac{(-50)}{(-10)}$
divide to get your zeros	t = -4 or $t = 5$

thank a math teacher.

Discriminant

Do you see b² - 4ac in the formula above? It is called the **Discriminant**, because it can "discriminate" between the possible types of answer:

- when b² 4ac is positive, we get two Real roots (The graph has two x-intercepts)
- when it is zero we get just ONE real root (both answers are the same; the graph has one x-intercept)
- when it is negative we get no Real root

1.
$$(-5)^2 + 18x + 1 = 0$$

 $a = \frac{-5}{-5}$ $b = \frac{18}{18}$ $c = \frac{1}{18}$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{-b^2 - 2a}$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{-(18)^2 - 4(-5)(1)}$
 $x = \frac{-(18) \pm \sqrt{(18)^2 - 4(-5)(1)}}{2(-5)}$
 $x = \frac{-(18 + 18.5)}{-(10)}$
 $x = \frac{-(18 + 18.5)}{-(10)}$
 $x = \frac{-(18 + 18.5)}{-(10)}$
 $x = \frac{-3}{-10}$ $x = \frac{-36.5}{-10}$
 $x = \frac{-3}{-10}$ $x = \frac{1}{18}$ $x = \frac{-36.5}{-10}$
 $x = \frac{-3}{-10}$ $x = \frac{1}{18}$ $x = \frac{-3}{-10}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$X_{1,2} = \frac{-1 \mp \sqrt{\frac{-83}{1^2 - 4(-3)(-7)}}}{-6}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$X_{1,2} = \frac{-(-6) \mp \sqrt{(-6)^2 - 4(1)(-9)}}{2(1)}$$

$$X_{1,2} = \frac{-(-6) \mp \sqrt{36 - 36}}{2(1)}$$

$$X_{1,2} = \frac{-(-6) \pm \sqrt{36 - 36}}{2(1)}$$

$$X_{1,2} = \frac{-(-6) \pm \sqrt{36 - 36}}{2(1)}$$

ino solution.

Notice when discriminant is -No solutions.

4.
$$x^2 - 6x + 9 = 0$$

$$a = \frac{1}{2a} \qquad b = \frac{-6}{a} \qquad c = \frac{9}{a}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x_{1,2} = \frac{-(-6) \mp \sqrt{(-6)^2 - 4(1)(9)}}{2(1)}$$

$$x_{1,2} = \frac{6 \mp \sqrt{36 - 3b}}{2a}$$

$$x_{1,2} = \frac{6 \mp \sqrt{36 - 3b}}{2a}$$

$$x_{1,2} = \frac{6 \mp \sqrt{36 - 3b}}{2a}$$

$$x_{1,2} = \frac{6 + \sqrt{36 - 3b}}{2a}$$

$$x_{1,3} = \frac{6 + \sqrt{36 - 3b}}{2a}$$

$$x_{1,4} = \frac{6 + \sqrt{36 - 3b}}{2a}$$

$$x_{1,5} = \frac{6 + \sqrt{36 - 3b}}{2a}$$

$$x_{1,6} = \frac{6 + \sqrt{36 - 3b}$$

A paper airplane follows a parabolic path with $h = -4t^2 + 11t + 3$, where h is height in metres, and t 5. is time in seconds. Use the quadratic formula to determine how long it takes for the paper airplane to hit the ground. Verify your answer using factoring.

- The path of one freestyle aerial skier from the top of the kicker (i.e. the ramp) to the landing point 6. can be modeled by $h = -0.2d^2 + 2.5d + 8$, where h is the height in metres above the landing point and d is the horizontal distance from the kicker.
 - When does the skier land?

$$O = -0.2 d^{2} + 2.5 d + 8$$

$$Q = -0.2 b = 2.5 c = 8$$

$$X_{1,2} = \frac{-2.5 + \sqrt{(2.5)^{2} - 4(-0.2)(8)}}{2(-0.2)} = \frac{-2.5 + \sqrt{12.65}}{-0.4} = \frac{-2.5 + 3.6}{-0.4}$$

$$\therefore \text{ at } 15.25 \text{ s.c.}$$

$$X_{1} = \frac{-2.5 + 3.6}{-0.4}$$

$$X_{1} = -2.5 + 3.6$$

$$X_{1} = -2.5 + 3.6$$

$$X_{1} = -2.5 + 3.6$$

$$X_{2} = -2.5 + 3.6$$

- For how long is the skier above a height of 10 m? $\begin{vmatrix}
 10 &= &-0.2d^2 + 2.5d + 8 & \\
 0 &= &-0.2d^2 + 2.5d + 8 10
 \end{vmatrix}$ $\begin{vmatrix}
 0 &= &-0.2d^2 + 2.5d + 8 10
 \\
 0 &= &-0.2d^2 + 2.5d 2
 \\
 0 &= &-0.2d^2 + 2.5d 2
 \end{vmatrix}$ $\begin{vmatrix}
 X_{1,2} &= & \frac{-2.5 + 0.9}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + 0.9}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + 0.9}{-0.4} & \\
 X_{2} &= & \frac{-2.5 0.9}{-0.4} & \\
 X_{3} &= & \frac{-2.5 0.9}{-0.4} & \\
 X_{4} &= & \frac{-2.5 0.9}{-0.4} & \\
 X_{5} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4} & \\
 X_{1,2} &= & \frac{-2.5 + \sqrt{(2.5)^2 4(-0.2)(-1)}}{-0.4}$ For how long is the skier above a height of 10 m b.
- c.
- The length of a rectangular garden is 6 more than the width. The area is $27m^2$. Use the quadratic 6. formula to determine the dimensions of the garden. Verify your answer using factoring.

Tornula to determine the dimensions of the garden. Verify your answer using factoring.

$$\begin{array}{c}
x+6 \\
A=27
\end{array}$$

$$\begin{array}{c}
x+3 \\
x+3
\end{array}$$

$$\begin{array}{c}
x+3 \\
x=6-12 \\
0=x^2+6x-27
\end{array}$$

$$\begin{array}{c}
x+3 \\
0=(x-3)(x+9)
\end{array}$$