Date:__

Determining the Equation of a Sinusoidal Function

Determining the Equation of a Sinusoidal Function
$$f(x) = asin[k(x-d)] + c \text{ and } f(x) = acos[k(x-d)] + c$$

where $f(x) = asin[k(x-d)] + c$

where $f(x) = asin[k($

<u>Case 1: SINE EQUATION</u>
The function can be considered as a **sine** function. Determine the equation of the function, and then check your answer using desmos. (Note: You need to choose degrees on Desmos. Just click 🎤)

The desirion destroy of the large factor of the curve - axis of the curve - axis of the curve
$$\frac{6-(-1)}{2} = \frac{6}{4} = \frac{360}{4} = \frac{360$$

Case 2: COSINE EQUATION

The function above can be considered as a **cosine** function. Determine the equation of the function and then check your answer using desmos.

Key features same as above
$$c=0$$
 $a=6$ $k=1$
 $y=6\cos(x-90)^{0}$

Chapter 6: Sinusoidal Functions

Ex1: Write two equations to represent each function. - Oxis of the

oxis of the - amplitude - Period =
$$\frac{360}{k}$$

curve $\frac{6+(-2)}{2} = 2$ $\frac{6-(-2)}{2} = 4$ $\frac{360=\frac{360}{k}}{2}$

$$\frac{6-f^2}{2} = 4$$

Sine equation
$$\Rightarrow y = q \sin \left[k(x-d) \right] + c$$

 $y = 4 \sin (x-45) + 2$

cas equation =)
$$y = a\cos\left[k(x-d)\right] + c$$

 $y = 4\cos\left(x-135\right) + 2$

Ex2: Write **two** equations to represent each function.

-axis of the curve
$$-\frac{1+(-6)}{2} = -3.5$$

axis of the curve
$$-\frac{1-(-6)}{2} = 3.5$$
 amplitude $-\frac{360}{2} = \frac{360}{2}$ $-\frac{1-(-6)}{2} = 2.5$ $-\frac{360}{2} = \frac{360}{2}$

①
$$y = a \sin[k(x-d)] + C$$
 ① 180° to left
 $y = -2.\frac{\pi}{2}(x) - 3.5$ $y = 2.\frac{\pi}{2}\sin(x+180) - 3.7$

3 180 to RIGHT

$$y = 2.5 \sin(x-180) - 3.5$$

 $y = -2.5 \cos(x-90) - 3.5$
 $y = 2.5 \cos(x-270) - 3.5$

Ex3: A nail located on the circumference of a water wheel is moving as the current pushes on the wheel. The height of the nail in terms of time can be modeled by the graph shown. **Determine the equation** of a sinusoidal function from its graph.

axis of the curve
$$c = \frac{3+(-1)}{2} = 1$$
 | Omplitude $c = \frac{3+(-1)}{2} = 1$ | $c = \frac{3+(-1)}{2}$

Period =
$$\frac{360}{k}$$

 $10 = \frac{360}{k}$
 $k = \frac{360}{10} = 36$ $k = 36$

$$\frac{5hift}{2} = 0 = 7.5$$
 $y = a \sin \left[k(x-d) \right] + c$
 $= 2 \sin \left[36(x-7.5) \right] + d$

$$y = a \sin \left[k(x-d) \right] + c \quad \text{or} \quad y = a \cos \left[k(x-d) \right] + c$$

$$= 2 \sin \left[36(x-7.5) \right] + d \quad y = 2 \cos \left[36x \right] + d$$