Part 1 - Product of Powers (Multiplication Rule)

The first law of exponents deals with multiplying powers. What happens when you multiply powers with the same base? Look for a pattern as you fill in the chart below. Use a calculator to evaluate each example, before and after you simplify it.

Example	Evaluate	Write in Expanded Form	Rewrite using Exponents	Evaluate
$2^{3} \cdot 2^{4}$	= 8 · 16 = 128	<u>2×2×2×2×2</u> ×2x2	27	128
$3^4 \cdot 3^1$	=81·3 =243	3x3x3x3x3	35	243
$5^{4} \cdot 5^{5}$	=625·3125 =1953125	<mark>ጛ፝፝፝፝፝ </mark>	5 ⁹	1953125
$7^2 \cdot 7^3$	= 49.343 = 16807-	7×7×7×7×7	75	16807
$(-2)^2 \cdot (-2)^3$	= 4 • -8 =-32	<mark>(-2)(-2)(-</mark> 2)(-2)(-2)	(-2)5	-32
$0.5^3 \cdot 0.5^2$	=0.125×0.25 =0.03125	<mark>(0.5)(0.5)(0.5</mark>)(0.5)(0.5)	(0.5) ⁵	0.03125
$\left(\frac{1}{2}\right)^3 \cdot \left(\frac{1}{2}\right)^4$	= 0.125×0.94 =0.0078125	$\mathcal{L}_{1} \left(\frac{1}{2} \right) \left($	$\left(\frac{1}{2}\right)^{7}$	=00078125
$x^m \cdot x^n$			Xmtr	

What patterns did you notice as you filled in the chart? What "shortcut" could you use for multiplying powers with the same base?

When powers with the same base multiplied, you keep the base and add the exponents. (7) -3 + (-3) + (-3) = 4 (-3) + (-3) = 4QA POWer

Part 2 - Quotient of Powers (Division Rule)

The second law of exponents deals with dividing powers. What happens when you divide powers with the same base? Look for a pattern as you fill in the chart below. Use a calculator to evaluate each example, before and after you simplify it.

Example	Evaluate	Write in Expanded Form	Rewrite using Exponents	Evaluate
$\frac{2^6}{2^4}$	<u>64</u> =4 16	<u>XxXxXx2x2</u> XXXXXXX	22	4
$\frac{5^7}{5^2}$	78125 25 = 3125	5x 5x 5x 5 x 5 x 5	55	3125
$\frac{8^4}{8^2}$	<u>4096</u> 64 = 64	8×8×8×8	82	64
$\frac{7^8}{7^3}$	5764801 340 = 16807	Xx Xx Xx 7x	75	16807
$\frac{(-2)^9}{(-2)^3}$	<u>-512</u> -8 =64	<u>(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)</u>	(-2) ⁶	64
$3^6 \div 3^1$	729 -243	<u>8×3×3×3×3×3</u> <u>8</u>	35	243
$\frac{x^m}{x^n}$			χ ^{m-~}	

What patterns did you notice as you filled in the chart? What "shortcut" could you use for dividing powers with the same base?

I noticed that when you subtract the exponents, you get the some onswer as evoluoting in the evolution column,

Part 3 - Power of a Power

The next law of exponents deals with raising a power to a power. What happens when you raise a power to another power? Look for a pattern as you fill in the chart below.

Example	Write in Expanded Form	Rewrite Using Exponents	
$(2^3)^2$	$(2^{3})(2^{3}) = (2 \cdot 2 \cdot 2)(2 \cdot 2 \cdot 2)$	26	
(3 ²) ⁴	$(3^{2})(3^{2})(3^{2})(3^{2})$	32+2+2+2 = 3 ⁸	Ce.
(5 ⁴) ³	(5 ⁴)(5 ⁴)(5 ⁴)(5 ⁴)	512 4	Constant in the second second
$(7^2)^2$	$(7^2)(7^2)$	74	
$\left[\left(\frac{1}{2}\right)^2\right]^5$	$\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}$	(1/2)10	
$(x^m)^n$		X ^{m-n}	

1. What patterns did you notice as you filled in the chart?

When you write exponent in expanded form, it turns into multiplication of powers with the same base.

2. How do you think you can use these patterns to make an inference about the rule for raising a power to a power? Explain your thinking.

I can multiply the exponents **MULTIPLYING POWERS DIVIDING POWERS** When finding the **product** of powers When finding the **quotient** of powers with the same base _ keep the with the same base, Keep the base add exponents $a^m \cdot a^n = a^{m+n}$ base subtract exponents

POWER of a POWER

When you raise a power to a power, keep the **225** and multiply the

exponents $(a^m)^n = a^{m \cdot n}$

Practice: Exponent Rules Simplify, but do not evaluate

Simplify, but do not evalua			· · · · · · · · · · · · · · · · · · ·		
a. $8^3 \times 8^6$	b. $y^3 \times y^4 \times y$	c. $(-6)^2 \times (-6)^4$	d. $2^3 \times 4^2 \times 4 \times 2^5$		
=8 ³⁺⁶ = 8	= y ³⁺⁴⁺¹	= (-6) ²⁺⁴	$= 2^{3+5} \times 4^{2+1}$ $= 2^8 \times 4^3$		
	= A 8	= (-6) ⁶	$= 2^{8} \times (2^{2})^{3}$ $= 2^{8} \times 2^{6} = 2^{14}$		
e. $5^3 \div 5^2 \times 5^8$ = $5^{3-2} \times 5^8$	f. $8^4 \times 8^3 \div 8^5$ = $8^{4+3} \div 8^5$	g. $\left(\frac{3}{2}\right)^2 \times \left(\frac{3}{2}\right)^5$	h. $\frac{2^2 \times 3^2 \times 2^4 \times 3}{2^5 \times 3}$		
$=5^{3-2} \times 5^{8}$ $=5^{1} \times 5^{8}$ $=5^{1+8}$	f. $8^{+} \times 8^{3} \div 8^{3}$ = $8^{4} \div 8^{5}$ = $8^{7} \div 8^{5}$ = 8^{7-5}	$= \left(\frac{3}{2}\right)^{2+5}$	$= \frac{2^{2+4} \times 3^{2+1}}{2^{5} \times 3}$ $= \frac{2^{6} \times 3^{3}}{2^{5} \times 3}$		
=59	$=\frac{8}{8}$		$=2^{6-5} \times 3^{3-1} = 2 \times 3^{2}$		
i. $(5^2)^3$	j. $(a^3b)^2$	k. $\frac{a^3b^6}{ab^2} = a^{3-1} \cdot b^{6-1}$	$2^{1.} (m^2 n)^2 = m^{2 \times 2} \cdot n^2$		
$=(5^{2})(7^{2})(7^{2})$	=93×2 · 61×2	$ab^2 = 0 \cdot 5^{\circ}$	= m4n ²		
$=5^{2+2+2}$	$= 96b^{2}$	$=a^2 \cdot b^4$	2		
= 5 ⁻⁶					
Find the missing exponen	 t:				
m. $10^6 \times 10^x = 10^{10}$	$\frac{5^x}{2} = 5^2$	o. $3^x \times 3^3 = 3^7$	p. $\frac{(-2)^8}{(-2)^x} = (-2)$		
6+X 10	$\lim_{n \to \infty} \frac{5^{n}}{5^{3}} = 5^{2}$	$f_{3}^{x+3} = 3^{7}$			
6 + x 10 + 10 = 10	$5^{x-3} = 5^2$	then $x+3=7$	$(-2)^{8-x} = (-2)^{1}$		
then $6tx = 10$	5 = 7	x=7-3	then 8-x=1		
x = (0-b)	x-3=2	$\overline{x=4}$			
	x = 2 + 3	(1-4)	-x = 1-8 -x = -7		
$\left(x=4\right)$					
	(x=5)		x=7		
ANSWERS: a) 8^9 , b) y^8 , c) $(-6)^6$	d , d , $2^{8}x4^{3}$, e , 5^{9} , f , 8^{2} , g , g , $(3/2)$	\int_{1}^{7} , h) 2x3 ² , i) 5 ⁶ , j) a ⁶ b ² , k) a ² b ⁴ , l)	m ⁴ n ² ,		
m) $x = 4$, n) $x = 5$, o) $x = 4$, p) $x = 7$					