Lesson: Rearranging from Standard Form $(A x+B y+C=0)$ to Slope-Intercept Form $(y=m x+b)$

When an equation is in slope-intercept form $(y=m x+b)$ we can easily identify the slope and y-intercept. It also makes graphing the equation a quick task and allows us to easily enter equations into the graphing calculator.

To rearrange an equation to this form, solve the equation for y (get the y by itself).

1. Rearrange $2 x-2 y+1=0$ to slope/y-intercept form.

Steps $$
\begin{aligned} & \text { Work } \\ & 2 x+2 y+1=0 \\ & 2 x+2 y+1-2 x-1=0-2 x-1 \\ & 2 y=-2 x-1 \\ & \frac{2 y}{2}=\frac{-2 x}{2}-\frac{1}{2} \end{aligned}
$$
 Work

 Work}coefficient, EVERY TERM must be divided.
\rightarrow Place your fractions in lowest terms.
\rightarrow Isolate the ' y-term' by eliminating the other terms. Applying the opposite operation to both sides of the equation to do this.
\rightarrow Write the x term first, and the constant term second (keeping with the form $y=m x+b$)
\rightarrow Divide both sides by the coefficient of y. Be careful, it may be negative. When dividing an entire side by the
***if the equation is in standard form (=0) and the coefficient of the ' y-term' is negative, try eliminating the ' y term' first and see what happens...
2. Rearrange the following to slope/y-intercept form.
$\begin{aligned} x+3 y+9 & =0 \\ x+3 y+9-x-9 & =0-x-9 \\ 3 y & =-x-9 \\ \frac{3 y}{3} & =\frac{-x}{3} \frac{-9}{3} \\ y & =\frac{-1}{3} x-3\end{aligned}$

$$
3 x-y=0
$$

$$
2 x+5 y-2 x=0-2 x
$$

$$
3 x-y-3 x=0-3 x
$$

$$
\frac{-3 y}{-3}=\frac{-5 x}{-3} \frac{-4}{-3}
$$

$$
y=\frac{5}{3} x+\frac{4}{3}
$$

$$
\begin{aligned}
& \frac{-y}{-1}=\frac{-3 x}{-1} \\
& y=3 x
\end{aligned}
$$

Practice: Rearranging the equation of a line into $y=m x+b$ form
Rearrange the following equations into $y=m x+b$ form
a) $2 x+y=3=0$

$$
y=-2 x+3
$$

b) $3 x-y+5=0$

$$
\begin{aligned}
3 x+5 & =y \\
y & =3 x+5
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
9 x-5 y+5 & =0 \\
\frac{9 x}{5}+\frac{5}{5} & =\frac{5 y}{5} \\
\frac{9}{5} x+1 & =y \\
y & =\frac{9}{5} x+1
\end{aligned}
$$

e) $3 x-y=7$

$$
\begin{aligned}
\frac{-y}{-1} & =\frac{-3 x}{-1}+\frac{7}{-1} \\
y & =3 x-7
\end{aligned}
$$

g) $-3 y+6 x=0$

$$
\begin{aligned}
\frac{6 x}{3} & =\frac{3 y}{3} \\
2 x & =y \\
y & =2 x
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
4 x-3 y+6 & =0 \\
\frac{4 x}{3}+\frac{6}{3} & =\frac{3 y}{3} \\
\frac{4}{3} x+2 & =y \\
y & =\frac{4}{3} x+2
\end{aligned}
$$

f) $5 x-y+2=0$

$$
\begin{aligned}
5 x-y+2 & =0 \\
5 x+2 & =y \\
y & =5 x+2
\end{aligned}
$$

h) $2 x+3 y=-24$

$$
\begin{aligned}
& \frac{3 y}{3}=\frac{-2 x}{3} \frac{-24}{3} \\
& y=\frac{-2}{3} x-8
\end{aligned}
$$

i) Paul's catering company charges according to the equation $250 x-10 y+2000=0$, where y represents the total cost and x represents the number of people.
Rearrange this equation to determine his charge per person and fixed cost.

$$
\begin{aligned}
\frac{250 x}{10}+\frac{2000}{10} & =\frac{10 y}{10} \\
25 x+200 & =y
\end{aligned}
$$

$$
y=25 x+200
$$

\therefore Paul charges $\$ 25$ per person on $\$ \$ 200$ as a fixed cost.

