Education Quality and

 Accountability OfficeGrade 9 Assessment of Mathematics 2012, Academic

Released Item-Specific Rubrics and Sample Student Responses with Annotations

Assessment of Mathematics
Grade 9 Academic Program
Specific Open-Response Scoring Guide

What a Bargain

Code	Descriptor
B	Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English; - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know"); - Off topic: no relationship of written work to the question.
10	Application of knowledge and skills to use percents to determine the total cost of Susan's tennis racket shows limited effectiveness due to - misunderstanding of concepts; - incorrect selection or misuse of procedures.
20	Application of knowledge and skills to use percents to determine the total cost of Susan's tennis racket shows some effectiveness due to - partial understanding of the concepts; - errors and/or omissions in the application of the procedures.
30	Application of knowledge and skills to use percents to determine the total cost of Susan's tennis racket shows considerable effectiveness due to - an understanding of most of the concepts; - minor errors and/or omissions in the application of the procedures.
40	Application of knowledge and skills to use percents to determine the total cost of Susan's tennis racket shows a high degree of effectiveness due to - a thorough understanding of the concepts; - an accurate application of the procedures (any minor errors and/or omissions do not detract from the demonstration of a thorough understanding)

What a Bargain!

Susan buys a tennis racket from a store.

- The tennis racket's original price is $\$ 75$.
- All tennis rackets are on sale for 25% off the original price.
- The tennis racket has a scratch, so she receives an additional 10% off the sale price.

How much does Susan pay for her tennis racket, including $13 \% \operatorname{tax}$?
Show your work.
$=75-25=\$ 50$
$=\$ 50+13$ 报 3
\therefore susan payed $\$ 63$ for the tens racket.

Annotation:
Response demonstrates a misunderstanding of concepts; shows percents treated as dollars with the first discount percent subtracted and the tax percent added, and the second discount percent not used.

What a Bargain!

Susan buys a tennis racket from a store.

- The tennis racket's original price is $\$ 75$.
- All tennis rackets are on sale for 25% off the original price.
- The tennis racket has a scratch, so she receives an additional 10% off the sale price.

How much does Susan pay for her tennis racket, including 13% tax?
Show your work.

$$
\begin{aligned}
& 75 \times .25=18.75 \\
& 75-18.75=56.25
\end{aligned}
$$

Annotation:
Response demonstrates a partial understanding of the concepts; shows accurate calculations for the 25% discount and the first sale price, but the second sale price and the total price including tax are not calculated.

What a Bargain!

Susan buys a tennis racket from a store.

- The tennis racket's original price is $\$ 75$.
- All tennis rackets are on sale for 25% off the original price.
- The tennis racket has a scratch, so she receives an additional 10% off the sale price.

How much does Susan pay for her tennis racket, including 13\% tax?
Show your work.

$$
\begin{aligned}
& \$ 75 \text { total sale }=35 \% \text { off } \\
& 35 \%=\frac{35}{100}=.35 \\
& 75 \times .36=26.25 \% \text { This means she will relieve a } \\
& \text { original price of } \$ 75 \text {. } \\
& 75-26.25=48.75 . \\
& \text { Nah add } 13 \% \\
& 13 \%=\frac{13}{100}=.13 \\
& \text { This means the tax on the } \\
& 48.75 \times .13=6.33 \text { themis racket after } 35 \% \text { discount. } \\
& \text { is } \$ 6.33 \text {. } \\
& 48.75+6.33=\$ 55.08 \\
& \text { susan pays } \$ 55.08 \text { for the tennis racket, after } \\
& 35 \% \text { discount, and } 13 \% \text { tax. }
\end{aligned}
$$

Annotation:

Response demonstrates an understanding of most of the concepts; shows incorrect totalling of the sale percents (10% is off first sale price not original price) but this discount is applied accurately to calculate the sale price as well as the tax on the sale price and the total price.

Academic (Question 6) Name of item: What a Bargain

What a Bargain!

Susan buys a tennis racket from a store.

- The tennis racket's original price is $\$ 75$.
- All tennis rackets are on sale for 25% off the original price.
- The tennis racket has a scratch, so she receives an additional 10% off the sale price.

How much does Susan pay for her tennis racket, including 13\% tax?
Show your work.

$$
\begin{array}{r}
\$ 75 \\
\times \quad 0.5 \\
\hline \$ 56.25
\end{array}
$$

$$
\begin{aligned}
\$ 8.25 & \$ 50.625 \\
\times 0.9 & \times 13 \\
\$ 50.625 & \$ 1.58125
\end{aligned}
$$

[^0]Assessment of Mathematics
Grade 9 Academic Program
Specific Open-Response Scoring Guide

Which is Which?

Code	Descriptor
B	Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English; - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I - Off topic: no relationship of written work to the question.
10	Application of knowledge and skills involving drawing a graph, determining an equation and explaining the properties of a partial variation shows limited effectiveness due to - misunderstanding of concepts; - incorrect selection or misuse of procedures.
20	Application of knowledge and skills involving drawing a graph, determining an equation and explaining the properties of a partial variation shows some effectiveness due to
- partial understanding of the concepts;	
- errors and/or omissions in the application of the procedures.	

properties of a partial variation shows considerable effectiveness due to

- an understanding of most of the concepts;

- minor errors and/or omissions in the application of the procedures.\end{array}\right|\)

Anchor - Code 10	
Academic (Question 13) \quad Name of item: Which is Which?	

Which Is Which?

A relationship between the total cost to use a gym for a month, C, and the number of visits, n, is a partial variation. The total cost for 10 visits during one month is $\$ 50$.

Draw a graph that could represent this relationship. Label each axis with an appropriate scale.

Determine the equation for your graph.

$$
c=50 n+10
$$

Explain how you know your equation represents a partial variation.
I know my equation represents a partial variation because to total cost per month for 10 visits is $\$ 50$.

[^1]
Which Is Which?

A relationship between the total cost to use a gym for a month, C, and the number of visits, n, is a partial variation. The total cost for 10 visits during one month is $\$ 50$.
Draw a graph that could represent this relationship. Label each axis with an appropriate scale.

Determine the equation for your graph.

$$
c=S n
$$

Explain how you know your equation represents a partial variation.

Annotation:

Response demonstrates partial understanding of the concepts; shows a graph that represents a direct variation and equation matches the graph, but explanation does not support direct variation.

Anchor - Code 30
Academic (Question 13) \quad Name of item: Which is Which?

Which Is Which?

A relationship between the total cost to use a gym for a month, C, and the number of visits, n, is a partial variation. The total cost for 10 visits during one month is $\$ 50$.
Draw a graph that could represent this relationship. Label each axis with an appropriate scale.

Determine the equation for your graph.

$$
C=10 n+10
$$

Explain how you know your equation represents a partial variation.
It represents a partial variation because it doesn't start at the origin.

[^2]| Anchor - Code 40 |
| :---: |
| Academic (Question 13) \quad Name of item: Which is Which? |

Which Is Which?

A relationship between the total cost to use a gym for a month, C, and the number of visits, n, is a partial variation. The total cost for 10 visits during one month is $\$ 50$.
Draw a graph that could represent this relationship. Label each axis with an appropriate scale.

Number of visits

$$
60=n+
$$

Determine the equation for your graph.

$$
c=4 n+10
$$

Explain how you know your equation represents a partial variation.
I know the equation represents a portion variation because it has a 'y intercept, 110 .

[^3]Assessment of Mathematics
Grade 9 Academic Program
Specific Open-Response Scoring Guide

Counting Pennies

Code	Descriptor
B	Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English; - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know"); - Off topic: no relationship of written work to the question.
10	Problem-solving process to determine the number of pennies in the container when the total mass is 185 g shows limited effectiveness due to - minimal evidence of a solution process; - limited identification of important elements of the problem; - too much emphasis on unimportant elements of the problem; - no conclusions presented or conclusion presented without supporting evidence.
20	Problem-solving process to determine the number of pennies in the container when the total mass is 185 g shows some effectiveness due to - an incomplete solution process; - identification of some of the important elements of the problem; - some understanding of the relationships between important elements of the problem; - simple conclusions with little supporting evidence.
30	Problem-solving process to determine the number of pennies in the container when the total mass is 185 g shows considerable effectiveness due to - a solution process that is nearly complete; - identification of most of the important elements of the problem; - a considerable understanding of the relationships between important elements of the problem; - appropriate conclusions with supporting evidence.
40	Problem-solving process to determine the number of pennies in the container when the total mass is 185 g shows a high degree of effectiveness due to - a complete solution process; - identification of all important elements of the problem; - a thorough understanding of the relationships between all of the important elements of the problem; - appropriate conclusions with thorough and insightful supporting evidence.

| Anchor - Code 10 |
| :---: | :---: |
| Academic (Question 14) \quad Name of item: Counting Pennies |

Counting Pennies

Identical pennies are placed in a container and the total mass is recorded.
The table below gives information about the total mass of different numbers of pennies in the container.

Number of pennies	Total mass (g)
$2(4)$	60
$2(10$	65

Use the data to determine the number of pennies in the container when the total mass is 185 g .
Justify your answer. You may use the grid if you wish.

[^4]| Anchor - Code 20 | |
| :---: | :---: |
| Academic (Question 14) \quad Name of item: Counting Pennies | |

Counting Pennies

Identical pennies are placed in a container and the total mass is recorded.
The table below gives information about the total mass of different numbers of pennies in the container.

Number of pennies	Total mass (g)
4	60
6	65
10	75

Use the data to determine the number of pennies in the container when the total mass is 185 g . Justify your answer. You may use the grid if you wish.

Annotation:
Response demonstrates an incomplete solution process; shows the rate of change used to extend the table beyond 10 pennies but the number of pennies for 185 g is not determined.

| Anchor－Code 30 |
| :---: | :---: |
| Academic（Question 14）\quad Name of item：Counting Pennies |

Counting Pennies

Identical pennies are placed in a container and the total mass is recorded．
The table below gives information about the total mass of different numbers of pennies in the container．

Number of pennies	Total mass (\mathbf{g})
4	60
6	65
10	75

Use the data to determine the number of pennies in the container when the total mass is 185 g ．
Justify your answer．You may use the grid if you wish．Counting Pees
by looking of the table， 1 see that e⿴囗十y 2 pernisadded is 5 gg ．so every perry is 2.5 sg ．
also since $60 \mathrm{~g}=4$ perries． I know that the storting mas is 50 g with no peonies （subtracting $4(0.25)$ from 60）
SO that is my corstiont \rightarrow SO g．
（initial moss） then each perry lade is 2.5 sg ．

$$
y=50+2.5(185)
$$

$$
=50+462.5
$$

$$
y=512.5 g \text { when } 185 \text { pennies }
$$

[^5]	Anchor - Code 40
Academic (Question 14) \quad Name of item: Counting Pennies	

Counting Pennies

Identical pennies are placed in a container and the total mass is recorded.
The table below gives information about the total mass of different numbers of pennies in the container.

Number of pennies	Total mass (g)
4	60
6	65
10	75

Use the data to determine the number of pennies in the container when the total mass is 185 g . Justify your answer. You may use the grid if you wish.

$$
\begin{aligned}
\therefore \quad & 185 \mathrm{~g} \text { equals to } \\
& 54 \text { pennies. }
\end{aligned}
$$

Annotation:
Response demonstrates a complete solution process; shows points on a graph that are evidence of repeatedly applying the rate of change (5 g for 2 pennies) from 50 g to 185 g to justify correct answer of 54 pennies.

Assessment of Mathematics
Grade 9 Academic Program
Specific Open-Response Scoring Guide
Know Your Lines

Code	Descriptor
B	Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English; - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know"); - Off topic: no relationship of written work to the question.
10	Application of knowledge and skills to compare Line A and Line B using the properties of slopes of lines shows limited effectiveness due to - misunderstanding of concepts; - incorrect selection or misuse of procedures.
20	Application of knowledge and skills to compare Line A and Line B using the properties of slopes of lines shows some effectiveness due to - partial understanding of the concepts; - errors and/or omissions in the application of the procedures.
30	Application of knowledge and skills to compare Line A and Line B using the properties of slopes of lines shows considerable effectiveness due to - an understanding of most of the concepts; - minor errors and/or omissions in the application of the procedures.
40	Application of knowledge and skills to compare Line A and Line B using the properties of slopes of lines shows a high degree of effectiveness due to - a thorough understanding of the concepts; - an accurate application of the procedures (any minor errors and/or omissions do not detract from the demonstration of a thorough understanding)

Anchor - Code 10	
Academic (Question 22) \quad Name of item: Know Your Lines	

Know Your Lines

Consider the equations of the two lines below.
Line A: $y=-\frac{3}{2} x-7$
Line B: $y=\frac{2}{3} x-4$
Compare Line A and Line B. You may use the grid if you wish.
Justify your answers.
Complete the table below.

Annotation:

Response demonstrates a misunderstanding of the concepts; no comparison is made of directions, Line A is identified as steeper with no justification and the lines are not identified as perpendicular.

| Anchor - Code 20 |
| :---: | :---: |
| Academic (Question 22) \quad Name of item: Know Your Lines |

Know Your Lines

Consider the equations of the two lines below.
Line A: $y=-\frac{3}{2} x-7$
Line B: $y=\frac{2}{3} x-4$
Compare Line A and Line B. You may use the grid if you wish.
Justify your answers.
Complete the table below.

Characteristic	Comparison of Line A and Line B , with Justification	
Direction from left to right	line A - rises to the left	$\frac{\text { line } b}{\text { rises to the }}$ right
Steepness	$\frac{\text { line A }}{\text { slope is }} \begin{aligned} & \frac{-3}{2} \end{aligned}$	line b slope is $\frac{2}{3}$
Parallel, perpendicular or neither	line A perpendicular to line B	line B perpendicular to line A

[^6]	Anchor - Code 30
Academic (Question 22) \quad Name of item: Know Your Lines	

Know Your Lines

Consider the equations of the two lines below.
Line A: $y=-\frac{3}{2} x-7$
Line B: $y=\frac{2}{3} x-4$

Compare Line A and Line B. You may use the grid if you wish.

Justify your answers.
Complete the table below.

manata	
	Line A goes in a downward Line Bitigoes upward and
moses	Line A is steeper then line B
mex	They an perpendicular and the fractions are tlipped
	$\frac{-3}{2} \quad \frac{2}{3} \text { fliperd }$

[^7]	Anchor - Code 40
Academic (Question 22) \quad Name of item: Know Your Lines	

Know Your Lines

Consider the equations of the two lines below.

Line A: $y=-\frac{3}{2} x-7$
Line B: $y=\frac{2}{3} x-4$
Compare Line A and Line B. You may use the grid if you wish.
Justify your answers.
Complete the table below.

Characteristic	Comparison of Line A and Line B, with Justification
Direction from left to right	A : slopes downward from leff to right. B: slopes upward from left to right. Line A is negative $y=-3$ negative slope Line B is negative $y=-\frac{3}{2} x-7$ Line B is positive $y=\frac{2}{3} x-4$ posive slope
Steepness	A: very stecp B: Less steep than "Line A." Line A is steeper $\rightarrow \frac{3}{2} \rightarrow$ highervise thar rwn. Line B is kess steep $\rightarrow-\frac{2}{3} \rightarrow$ lower rise than run
Parallel, perpendicular or neither	Lines" A " " B " are perpendicular Slepeof: \rightarrow Line $A: \frac{-3}{2}$ \rightarrow Line B: $\frac{2}{3}$ negative recipicals -Thay intersect!

[^8]Assessment of Mathematics
Grade 9 Academic Program
Specific Open-Response Scoring Guide

Reduce, Reuse and Recycle

Code	Descriptor
B	Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English; - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know"); - Off topic: no relationship of written work to the question.
10	Problem-solving process to determine all the possible values of n and C shows limited effectiveness due to - minimal evidence of a solution process; - limited identification of important elements of the problem; - too much emphasis on unimportant elements of the problem; - no conclusions presented or conclusion presented without supporting evidence.
20	Problem-solving process to determine all the possible values of n and C shows some effectiveness due to - an incomplete solution process; - identification of some of the important elements of the problem; - some understanding of the relationships between important elements of the problem; - simple conclusions with little supporting evidence.
30	Problem-solving process to determine all the possible values of n and C shows considerable effectiveness due to - a solution process that is nearly complete; - identification of most of the important elements of the problem; - a considerable understanding of the relationships between important elements of the problem; - appropriate conclusions with supporting evidence.
40	Problem-solving process to determine all the possible values of n and C shows a high degree of effectiveness due to - a complete solution process; - identification of all important elements of the problem; - a thorough understanding of the relationships between all of the important elements of the problem; - appropriate conclusions with thorough and insightful supporting evidence.

Reduce, Reuse and Recycle

A high school is starting a recycling program.
The relationship between the total cost of the program, C, and the number of recycling bins, n, is represented by the equation $C=48 n+75$.
The school must install a minimum of 12 recycling bins and has a maximum of $\$ 1000$ to spend on the program.
What are the possible values of C and n in this situation?
Justify your answer.
multiply 75 by the \# of bins needed (12) and the answer was 900 . they have enough money, because the max dollars spent was supposed to be $\$ 1000.00$

The possible values of n are \qquad 2

The possible values of C are \qquad .

Annotation:

Response demonstrates limited identification of important elements of the problem; shows correct lower bound for n, but value for C is neither an upper nor a lower bound.

Reduce, Reuse and Recycle

A high school is starting a recycling program.
The relationship between the total cost of the program, C, and the number of recycling bins, n, is represented by the equation $C=48 n+75$.
The school must install a minimum of 12 recycling bins and has a maximum of $\$ 1000$ to spend on the program.
What are the possible values of C and n in this situation?
Justify your answer.

$$
n=19
$$

$1000=44(n)+75$
$1000-75=48(n)$
$9.25=48(n)$
$\frac{925}{48}=\frac{48}{48}(n)$

The possible values of n are \qquad 9
$C=44(12)+75$
$c=576+75$
c=651

The possible values of C are $\$ 651$

Annotation:
Response demonstrates an identification of some of the important elements of the problem; no ranges shown for either n or C, but correct upper bound for n and lower bound for C are determined with work shown.

	Anchor - Code 30
Academic (Question 23)	Name of item: Reduce, Reuse and Recycle

Reduce, Reuse and Recycle

A high school is starting a recycling program.
The relationship between the total cost of the program, C, and the number of recycling bins, n, is represented by the equation $C=48 n+75$.
The school must install a minimum of 12 recycling bins and has a maximum of $\$ 1000$ to spend on the program.
What are the possible values of C and n in this situation?
Justify your answer.

$$
\begin{array}{ll}
C=48 n+75 & C=48 n+75 \\
C=48(12)+75 & C=48(15)+75 \\
C=651 & C=795
\end{array}
$$

The possible values of n are $12,15,19$ \qquad $C=48 n+75$ $C=48(20)+75$ $c=1035$ \times

The possible values of C arc $651, \$ 795,987$

$$
C=48 n+75
$$ - $C=48(19)+75$

$C=987$
\therefore the school can buy at maximum
19 recycling bins because the total
cost will come to $\$ 987$. Any higher and it would be $\$ 1035$. Theres no need to go less because you will have money left over for more.

[^9]Reduce, Reuse and Recycle
A high school is starting a recycling program.
The relationship between the total cost of the program, C, and the number of recycling bins, n, is represented by the equation $C=48 n+75$.
The school must install a minimum of 12 recycling bins and has a maximum of $\$ 1000$ to spend on the program.
What are the possible values of C and n in this situation?
Justify your answer.

$$
\begin{aligned}
& C=\text { the ament spent }(\max \$ 1000) \\
& n=\text { number of recycling bins }(\min 12)
\end{aligned}
$$

The possible values of n are \qquad $12-19$

$$
\begin{aligned}
C & =48(12)+75 \\
& =\$ 651 \\
C & =48(19)+75 \\
& =\$ 987
\end{aligned}
$$

The possible values of C are \qquad $\$ 651-\$ 987$

Assessment of Mathematics
Grade 9 Academic Program
Specific Open-Response Scoring Guide
All the Right Stuff

Code	Descriptor
B	Blank: nothing written or drawn in response to the question
I	-Illegible: cannot be read; completely crossed out/erased; not written in English; - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I - Off topic: no relationship of written work to the question.
10	Application of knowledge and skills to determine the value of x by using the Pythagorean theorem shows limited effectiveness due to - misunderstanding of concepts; - incorrect selection or misuse of procedures.
20	Application of knowledge and skills to determine the value of x by using the Pythagorean theorem shows some effectiveness due to
- partial understanding of the concepts;	
- errors and/or omissions in the application of the procedures.	

considerable effectiveness due to

- an understanding of most of the concepts;

- minor errors and/or omissions in the application of the procedures.\end{array}\right|\)

| Anchor - Code 10 |
| :---: | :---: |
| Academic (Question 30) \quad Name of item: All the Right Stuff |

All the Right Stuff

The diagram below shows a small right triangle inside a large right triangle.

Determine the value of x.

Show your work.

$$
\begin{gathered}
a^{2}+b^{2}=c 2 \\
2.2^{2}+3 \partial^{2}=c 2 \\
4.84+10.24=c 2 \\
15.08=c^{2}
\end{gathered}
$$

[^10]
All the Right Stuff

The diagram below shows a small right triangle inside a large right triangle.

Determine the value of x.
Show your work.

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
22^{2}+3=c^{2} \\
4.84+10.24=c^{2} \\
15.08=c^{2} \\
\sqrt{15.08}=c \\
3.88=c
\end{gathered}
$$

\therefore The value of x is 3.88 m .

[^11]All the Right Stuff
The diagram below shows a small right triangle inside a large right triangle.

Determine the value of x.
Show your work, find C

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 6.4^{2}+2.2^{2}=c^{2} \\
& 40 . a 6+4.84=c^{2} \\
& 45.8=c^{2} \\
& c=\sqrt{45.8} \\
& c=6.77
\end{aligned}
$$

$$
\text { find } x
$$

$$
a^{2}+b^{2}=c^{2}
$$

$$
2.2+3.39=c^{2}
$$

$$
4.84+11.49=c^{2}
$$

$$
16.33=c^{2}
$$

$$
\sqrt{16,33}=c^{2}
$$

$$
4.04=c
$$

$\therefore x$ is 4.04 m long.

Annotation:
Response demonstrates an understanding of most of the concepts; shows the Pythagorean theorem applied incorrectly to determine base (addition instead of subtraction), base is divided by 2 and the Pythagorean theorem is applied a second time to determine x correctly, based on error.

Anchor - Code 40

All the Right Stuff
The diagram below shows a small right triangle inside a large right triangle.

Show your work.

$$
\begin{aligned}
& y=\sqrt{6 \cdot 4^{2}-2 \cdot 2^{2}} \\
& y=\sqrt{40 \cdot 96 \cdot 4 \cdot 84} \\
& y=\sqrt{36 \cdot 12} \\
& y=6 \mathrm{~m}
\end{aligned}
$$

Ans. The value of x is

$$
\begin{aligned}
& ?=6 \div 2 \\
& ?=3 \\
& x=\sqrt{2 \cdot 2^{2}}+3^{2} \\
& x=\sqrt{4.84+9} \\
& x=\sqrt{13.84} \\
& x=3.72 \mathrm{~m}
\end{aligned}
$$

Annotation:
Response demonstrates a thorough understanding of the concepts; shows the Pythagorean theorem applied correctly to determine missing base, base is divided by 2 and the Pythagorean theorem is applied correctly a second time to determine x.

Assessment of Mathematics
Grade 9 Academic Program
Specific Open-Response Scoring Guide
Tricky Triangle

Code	Descriptor
B	Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English; - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know"); - Off topic: no relationship of written work to the question.
10	Problem-solving process to determine the value of h using Pythagorean theorem or properties of polygons shows limited effectiveness due to - minimal evidence of a solution process; - limited identification of important elements of the problem; - too much emphasis on unimportant elements of the problem; - no conclusions presented or conclusion presented without supporting evidence.
20	Problem-solving process to determine the value of h using Pythagorean theorem or properties of polygons shows some effectiveness due to - an incomplete solution process; - identification of some of the important elements of the problem; - some understanding of the relationships between important elements of the problem; - simple conclusions with little supporting evidence.
30	Problem-solving process to determine the value of h using Pythagorean theorem or properties of polygons shows considerable effectiveness due to - a solution process that is nearly complete; - identification of most of the important elements of the problem; - a considerable understanding of the relationships between important elements of the problem; - appropriate conclusions with supporting evidence.
40	Problem-solving process to determine the value of h using Pythagorean theorem or properties of polygons shows a high degree of effectiveness due to - a complete solution process; - identification of all important elements of the problem; - a thorough understanding of the relationships between all of the important elements of the problem; - appropriate conclusions with thorough and insightful supporting evidence.

Anchor - Code 10

Tricky Triangle
Line segment $A B$ joins the midpoints of two sides of the triangle below. The length of $A B$ is half the length of the base of the triangle.

Determine the value of h in the diagram.
Show your work.

$$
\begin{aligned}
& \overline{E F} \text { is } 3 / 4 \text { of the base } \\
& \overline{C D} \text { is } 1 / 4 \text { the base } \\
& 20+40+60+80 \\
& =60+60+80 \\
& =120+80 \\
& =200
\end{aligned}
$$

Annotation:
Response demonstrates limited identification of important elements of the problem; shows proportions used to determine the lengths of the base and hypotenuse of the small and large triangles, but no evidence of using the Pythagorean theorem to determine h.

Anchor - Code 20

Academic (Question 31) Name of item: Tricky Triangle

Tricky Triangle

Line segment $A B$ joins the midpoints of two sides of the triangle below. The length of $A B$ is half the length of the base of the triangle.

Determine the value of h in the diagram.
Show your work.
Pythagorean theorem for h

$$
\begin{aligned}
& h^{2}=40^{2}+32^{2} \\
& h^{2}=1600+1024 \\
& h^{2}=2624 \\
& h=51.2 \mathrm{~cm}
\end{aligned}
$$

Annotation:

Response demonstrates some understanding of the relationships between important elements of the problem; corresponding hypotenuse is not used when the Pythagorean theorem is applied to determine the height of the mid-size triangle and there is an error in the application of the Pythagorean theorem (addition instead of subtraction).

Tricky Triangle

Line segment $A B$ joins the midpoints of two sides of the triangle below. The length of $A B$ is half the length of the base of the triangle.

Determine the value of h in the diagram.
Show your work.

Annotation:

Response demonstrates a considerable understanding of the relationships between important elements of the problem; shows proportions used to determine the length of the base and the corresponding hypotenuse for the largest triangle and the Pythagorean theorem is applied to find h, but with an error in the process (addition instead of subtraction).

Tricky Triangle

Line segment $A B$ joins the midpoints of two sides of the triangle below. The length of $A B$ is half the length of the base of the triangle.

Determine the value of h in the diagram.
Show your work.

Annotation:

Response demonstrates a thorough understanding of the relationships between all of the important elements of the problem; proportions used to determine the length of the hypotenuse of the mid-size triangle. The corresponding base is used with this when the Pythagorean theorem is applied accurately to determine the missing side, and this value is doubled to determine h.

[^0]: Annotation:
 Response demonstrates a thorough understanding of the concepts; shows correct calculations for the sale price using 75% followed by the 2 nd sale price using 90% and finally the total price including tax on the second sale price.

[^1]: Annotation:
 Response demonstrates misunderstanding of concepts; shows graph that represents a direct variation, equation does not match graph and explanation does not support partial or direct variation.

[^2]: Annotation:
 Response demonstrates minor errors in the application of the procedures; shows a graph that represents a partial variation and goes through $(10,50)$ but equation does not match graph. Explanation supports partial variation (doesn't start at the origin).

[^3]: Annotation:
 Response demonstrates an accurate application of the procedures; shows a graph that represents a partial variation which would go through $(10,50)$ if the graph was extended, equation matches the graph and explanation supports partial variation (has a y-intercept).

[^4]: Annotation:
 Response demonstrates minimal evidence of a solution process; shows differences in total mass along with the differences in number of pennies but no rate of change is determined and the number of pennies for 185 g is not determined.

[^5]: Annotation：
 Response demonstrates a considerable understanding of the relationships between important elements of the problem；shows the equation of the line determined correctly（with correct rate and intercept），but 185 g is substituted for n instead of y and equation is solved correctly．

[^6]: Annotation:
 Response demonstrates a partial understanding of the concepts; directions compared correctly but the graphed lines have errors, no comparison is made of their steepness and the lines are identified as perpendicular with no justification.

[^7]: Annotation:
 Response demonstrates an understanding of most of the concepts; directions compared correctly with justification (graphs), Line A is identified as steeper but with no justification and the lines are identified as perpendicular with justification.

[^8]: Annotation:
 Response demonstrates a thorough understanding of the concepts; directions compared correctly with justification, Line A identified as steeper with justification and the lines identified as perpendicular with justification.

[^9]: Annotation:
 Response demonstrates a considerable understanding of the relationship between important elements of the problem; shows 3 sets of corresponding values for n and C (including upper and lower bounds) with justification but no ranges nor all possible values.

[^10]: Annotation:
 Response demonstrates a misunderstanding of the concepts; shows evidence of using Pythagorean theorem with misconceptions (half the length of the large hypotenuse used), lengths are squared correctly but no square root is taken.

[^11]: Annotation:
 Response demonstrates errors and omissions in the application of the procedures; shows 6.4 used as the length of the base, base is divided by 2 and the Pythagorean theorem is applied correctly to determine x using this value of 3.2.

