SINE LAW

The sine law is very useful for solving triangles:

Solvin	g for	a	Side		
	b		С		
${\sin A}$	$={\sin R}$	=	$\frac{1}{\sin C}$		

Solving for an Angle
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

It works for any triangle:

a, b, and c are sides. A, B, and C are angle.

When Do We Use It?

The Sine Law is used to solve any triangle when given:

Case	1) 🗡	A	5		
	ANGLE	-	ANGLE	-	SIDE

Ex1: Solve for k.

Ex2. Find the value of $\angle P$.

$$\frac{5ind}{10} = \frac{sin47}{12}$$
 you can move 10 up where sih45 is

$$\sin \alpha = \frac{10 \cdot \sin 45}{12}$$

$$\sin \alpha = 0.5893$$

$$\sin^{-1}(0.5893) = d$$
 $(a = 36)$

Ex3. Determine the value of side c. Round to 1 decimal place. (ANS: 5.5)

$$\frac{c}{\sin 45} = \frac{7}{\sin 65}$$

$$C = \frac{7 \cdot \sin 45}{\sin 65}$$

Ex4. Determine the value of \angle B. Round to the nearest angle. (ANS: 57°)

$$\frac{8in\theta}{5} = \frac{sin42}{4}$$
 move 5 up

$$5in\Theta = \frac{5 \cdot sin42}{4}$$

$$\sin \theta = 0.8364$$

 $\sin^{-1}(0.8364) = 0$
 $\theta = 57$